Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 936-945    DOI: 10.11901/1005.3093.2018.181
  研究论文 本期目录 | 过刊浏览 |
Si对铸造高温合金K4169的凝固行为和力学性能的影响
李小亮1,2, 陈波1(), 邢炜伟1, 丁磊磊1, 马颖澈1, 刘奎1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Si on Solidification Behavior and Mechanical Property of Superalloy K4169
Xiaoliang LI1,2, Bo CHEN1(), Weiwei XING1, Leilei DING1, Yingche MA1, Kui LIU1
1 .Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

李小亮, 陈波, 邢炜伟, 丁磊磊, 马颖澈, 刘奎. Si对铸造高温合金K4169的凝固行为和力学性能的影响[J]. 材料研究学报, 2018, 32(12): 936-945.
Xiaoliang LI, Bo CHEN, Weiwei XING, Leilei DING, Yingche MA, Kui LIU. Effect of Si on Solidification Behavior and Mechanical Property of Superalloy K4169[J]. Chinese Journal of Materials Research, 2018, 32(12): 936-945.

全文: PDF(11620 KB)   HTML
摘要: 

依据Thermo-Calc计算结果并结合等温凝固实验,研究了含量(质量分数)为0.03%~0.65%的Si对K4169凝固特性的影响。结果表明:Si能降低合金的固、液相线温度并扩大固液两相区,当Si含量从0.03%提高到0.65%时合金的液相线温度由1354℃下降到1343℃,固相线温度由1241℃下降到1212℃。在凝固过程中Si偏析并在终凝区明显富集,Si使Nb、Mo在残余液相中的富集导致Cr和Fe的贫化。随着Si含量的提高,Laves的数量显著增加且数量增多。Si含量不同的合金中Laves相的形貌不同,Si含量为0.03%和0.23%的合金析出网状Laves相,而Si含量为0.42%Si和0.65%的合金析出大块状Laves相。Si含量对MC碳化物的形貌和析出温度影响不大。Si使K4169合金的室温拉伸性能和高温持久性能降低。Si含量由0.03%提高到0.65%时合金的强度和塑性降低,其高温持久寿命和延伸率分别从230 h和4%下降到100 h和1.8%,当Si含量高于0.23%时合金的延伸率低于指标。因此,应该合理控制K4169合金的Si含量。

关键词 金属材料K4169合金等温凝固元素偏析Laves相    
Abstract

The segregation- and precipitation-behavior of superalloy K4169 with 0.03~0.65% Si (atomic fraction) in the temperature range of 1150℃~1360℃ via thermo-calc simulation and isothermal solidification experiment. Results show that not only the temperature of solidus-liquid will decrease but also the solid-liquid two-phase region will enlarge with the existence of Si. The liquidus temperature of the alloy decreases from 1354℃ to 1343℃ and the solidus temperature drops from 1241℃ to 1212℃ with the increasing of Si content from 0.03% to 0.64%. With the increasing of Si content, the enrichment of Nb and Mo are promoted in the residual liquid phase, resulting in the depletion of Cr and Fe, while the content of Laves phase increases along with the segregation. Different morphologies are delivered of Laves phase due to the different Si contents in the alloy. The reticular Laves phase was obtained with 0.03% and 0.23% Si, while large blocky laves phase was observed with 0.42% and 0.65% Si. Si has almost no effect on the morphology and precipitation temperature of MC carbide. Si not only affects the room temperature performance of the alloy, but also the elevated temperature performance of the alloy. When the Si content increased from 0.03% to 0.65%, both of the creep-rupture life and elongation are decreased obviously. Base on these research results, as an overall consideration, it is rational to control the Si content for K4169 alloy.

Key wordsmetallic materials    K4169 alloy    isothermal solidification    elemental segregation    Laves phase
收稿日期: 2018-03-08     
作者简介:

作者简介 李小亮,男,1991年生,硕士生

C Cr Ni Mo Nb Al Ti B S N Fe
0.056 19.56 53.45 3.08 5.05 0.55 0.97 0.0029 0.004 0.0002 Bal.
表1  K4169母合金的化学成分
图1  Thermo-Calc平衡态计算结果
图2  不同Si含量的合金在等温温度为1350℃、1340℃、1290℃和1240℃的凝固样品的金相照片
图3  不同Si含量的合金等温凝固样品的等温温度与剩余液相体积分数的关系
Thermo-Calc
model
Scheil model Isothermal solidification
experiment
0.03Si liquidus 1354 1354 1360~1350
solidus 1208 1111 1240
MC 1270 1268 1290
Laves - 1143 -
0.23Si liquidus 1352 1352 1360~1350
solidus 1210 1116 1230
MC 1270 1269 1290
Laves - 1145 -
0.42Si liquidus 1348 1348 1350~1340
solidus 1200 1120 1220
MC 1270 1270 1290
Laves 1050 1157 1180
0.65Si liquidus 1343 1343 1350~1340
solidus 1188 1125 1210
MC 1270 1270 1290
Laves 1110 1167 1190
表2  不同Si含量的K4169合金等温凝固试验和模拟获得的固液相线温度和主要相析出温度
Alloy Ni Fe Cr Si Al Mo Nb Ti
0.03Si 1.06 1.59 1.83 0.53 1.65 0.91 0.26 0.31
0.23Si 1.18 1.79 1.92 0.25 1.44 0.68 0.22 0.31
0.42Si 1.27 2.08 2.07 0.18 2.13 0.52 0.18 0.30
0.65Si 1.29 2.12 2.15 0.16 2.12 0.46 0.16 0.37
表3  不同Si含量样品在1240℃等温温度下的合金元素的偏析系数
图4  0.03Si在1280℃等温凝固下残余液相在淬火中析出的共晶状Laves相形态
图5  0.03Si和0.23Si合金在1120℃等温时析出的网状Laves、0.42Si合金在1180℃等温时析出的块状Laves相以及0.65Si合金在1190℃等温时析出的块状Laves相
图6  不同Si含量合金在不同温度下Laves相和MC数量的变化
图7  不同Si含量的铸态组织
图8  不同Si含量样品的室温拉伸性能和在650℃/620 MPa下的持久性能
图9  不同Si含量试样的室温拉伸断口全貌图
图10  不同Si含量样品的室温拉伸断口纵剖面形貌
[1] Tang X, Cao L M, Gai Q D, et al.Investment casting technology and heat treatment process of K4169 superalloy integral nozzle ring[J]. Aerospace Mater. Technol., 2007, 37(6): 82(汤鑫, 曹腊梅, 盖其东等. K4169合金整体导向环精铸技术及热处理工艺研究[J]. 宇航材料工艺, 2007, 37(6): 82)
[2] Ji G S, Yang Y L, Qou S Z.Investigation of high-temperature phase transformation of nickel-base superalloy K4169[J]. J. Lanzhou Univ. Technol., 2016, 42(3): 14(季根顺, 杨彦莉, 寇生中. 镍基高温合金K4169的高温相变研究[J]. 兰州理工大学学报, 2016, 42(3): 14)
[3] Paulonis D F, Schirra J J.Alloy 718 at Pratt & Whitney-Historical Perspective and Future Challenges [A]. Loria E A ed. Superalloys. TMS, 2001: 13
[4] Mills W J.The effect of heat treatment on the room temperature and elevated temperature fracture toughness response of alloy 718[J]. J. Eng. Mater. Technol., 1980, 102: 118
[5] Zhang H Y, Zhang S H, Cheng M, et al.Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy[J]. Mater. Charact., 2010, 61: 49
[6] Whitmore L, Ahmadi M R, Guetaz L.The microstructure of heat-treated nickel-based superalloy 718Plus[J]. Mater. Sci. Eng., 2014, 610A: 39
[7] Bieber C G, Decker R F.The melting of malleable nickel and nickel alloys[J]. Trans. Metall. Soc. AIME, 1961, 221: 629-636
[8] Holt R T, Wallace W.Impurities and trace elements in nickel-base superalloys[J]. Int. Meter. Rev., 1976, 21: 1
[9] Hu Z Q, Sun W R, Guo S R, et al.Effect of P, S, and Si on the solidification, segregation, microstructure and mechanical properties in Fe-Ni base superalloys[J]. Acta Metall. Sin., 1996, 9: 443
[10] Wei X Y, Yang Q B.Effect of Mn and Si on notch sensitivity of an Fe-Ni base superalloy[J]. Acta Metall. Sin., 1984, 20: A261(魏翔云, 杨奇斌. Mn和Si对一种Fe-Ni基高温合金持久缺口敏感性的影响[J]. 金属学报, 1984, 20: A261)
[11] Xu Z F, Jiang L, Dong J S, et al.The effect of silicon on precipitation and decomposition behaviors of M6C carbide in a Ni-Mo-Cr superalloy[J]. J. Alloy. Compd., 2015, 620: 197
[12] Meetham G W.Trace elements in superalloys-an overview[J]. Metals. Technol., 1984, 11: 414
[13] Douglass D L, Armijo J S.The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr[J]. Oxidat. Metals, 1970, 2: 207
[14] Guo J T.Effects of several minor elements on superalloys and their mechanism[J]. Chin. J. Nonferr. Meter., 2011, 21: 465(郭建亭. 几种微量元素在高温合金中的作用与机理[J]. 中国有色金属学报, 2011, 21: 465)
[15] Liu Y, Deng B, Zhong Z Y, et al.Distribution and effect on precipitation of Si in GH907 superalloy[J]. Iron Steel, 1997, 32(6): 56(刘瑛, 邓波, 仲增墉等. 硅在GH907低膨胀高温合金中的分布及对析出相的影响[J]. 钢铁, 1997, 32(6): 56)
[16] Sun W R, Guo S R, Lu D Z, et al.Effect of Si on solidification and segregation in inconel 718 alloy[J]. J. Aeronaut. Mater., 1996, 16(2): 7(孙文儒, 郭守仁, 卢德忠等. Si对IN718合金凝固过程及元素偏析的影响[J]. 航空材料学报, 1996, 16(2): 7)
[17] Cao G X, Zhang M C, Dong J X, et al.Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes[J]. Rare Metal Mater. Eng., 2014, 43: 103(曹国鑫, 张麦仓, 董建新等. Nb含量对GH4169合金钢锭凝固及均匀化过程相演化规律的影响[J]. 稀有金属材料与工程, 2014, 43: 103)
[18] Sun W R, Guo S R, Guo J T, et al.The common strengthening effect of phosphorus, sulfur, and silicon in lower contents and a problem of a net superalloy [A]. Pollock T M, Kissinger R D, Bowman R R eds. Superalloys. TMS, 2000: 467
[19] McLean M, Strang A. Effects of trace elements on mechanical properties of superalloys[J]. Metals Technol., 1984, 11: 454
[20] Wang A C, Li Y Y, Fan C G, et al.Effect of P and Si(Mn) on the solidification segregation in an iron-based superalloy[J]. Scripta Metall. Mater., 1994, 31: 1695
[21] Shi Z X, Dong J X, Zhang M C, et al.Solidification characteristics and segregation behavior of Ni-based superalloy K418 auto turbochargre turbine[J]. J. Alloys Compd., 2013, 571: 168
[22] Gizan X R, Liu E Z, Zheng Z, et al.Solidification behavior and segregation of Re-containing cast Ni-base superalloy with different Cr content[J]. J. Mater. Sci. Technol., 2011, 27: 113
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.