Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 625-630    DOI: 10.11901/1005.3093.2018.169
  研究论文 本期目录 | 过刊浏览 |
新型聚丙烯酸水凝胶的自愈及其溶胀动力学
杨琴1(), 房春娟1, 赵娜1, 赵军凯1, 王文东2
1 西安建筑科技大学理学院 西安 710055
2 西安建筑科技大学环境与市政工程学院 西安 710055
Self-healing and Swelling Kinetics of a New Polyacrylic Acid Hydrogels
Qin YANG1(), Chunjuan FANG1, Na ZHAO1, Junkai ZHAO1, Wendong WANG2
1 School of Science , Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Environment, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

杨琴, 房春娟, 赵娜, 赵军凯, 王文东. 新型聚丙烯酸水凝胶的自愈及其溶胀动力学[J]. 材料研究学报, 2018, 32(8): 625-630.
Qin YANG, Chunjuan FANG, Na ZHAO, Junkai ZHAO, Wendong WANG. Self-healing and Swelling Kinetics of a New Polyacrylic Acid Hydrogels[J]. Chinese Journal of Materials Research, 2018, 32(8): 625-630.

全文: PDF(1284 KB)   HTML
摘要: 

以丙烯酸(AA)、水、七元瓜环(CB[7])和过硫酸钾(KPS)、NaCl为原料制备七元瓜环/聚丙烯酸水凝胶(CB[7]/PAA hydrogel),宏观观察了CB[7]/PAA hydrogel的自愈性,研究了这种自愈水凝胶的网络形成作用力。结果表明:这种水凝胶网络的形成作用力主要是多重氢键,具有自愈性,自愈后的最大拉伸量约为原长的1.73倍;AA含量较低时随着AA含量的提高溶胀率和溶胀速率增大,AA含量较高时随着AA含量的提高溶胀率和溶胀速率减小;这种水凝胶的溶胀率与溶胀速率,在pH值为7. 6的水溶液中的值明显高于在pH值为10.0和4.0水溶液中的值。使用Non-Fickian扩散模型研究了CB[7]/PAA hydrogel的溶胀机理。CB[7]/PAA hydrogel的动力学指数n、凝胶速率常数K和水分子扩散系数D的值表明,这种水凝胶的溶胀符合Non-Fickian扩散模式,在溶胀初期水分子的扩散速率与凝胶中的链段松弛速率相当。

关键词 功能高分子材料自愈氢键溶胀动力学    
Abstract

A self-healing CB[7]/PAA hydrogel was prepared with acrylic acid (AA), H2O, cucurbituril[7] (CB[7]), potassium persulfate (KPS) and NaCl as raw materials. The self-healing process of CB [7]/PAA hydrogel was investigated by means of FT-IR and 1H NMR techniques. Results show that the hydrogel networks formed during the self-healing of CB [7]/PAA hydrogel are mainly induced by the existence of multiple hydrogen bonds, and after the self-healing, the maximum tensile elongation of CB[7]/PAA hydrogel can reach about 1.73 times of that of the as prepared ones. Within a range of low AA content, the swelling and swelling rate of the hydrogel increase with the increasing AA content, while in a range of high AA content, the swelling and the swelling rate decreases with the increasing AA content; the swelling and swelling rate of the hydrogel in the aqueous solution of pH=7.6 were obviously higher than those in the aqueous solution of pH=10.0 and pH=4.0. The kinetic index n, rate constant K and water diffusion coefficient D of CB[7]/PAA hydrogel were acquired corresponding to non-Fickian diffusion mode. It follows that the swelling of CB [7]/PAA hydrogel is in accordance with the non-Fickian diffusion mode, and the diffusion rate of water molecules is comparable to that of the relaxation rate of chain segments in the hydrogel.

Key wordsfunctional polymer materials    self-healing    hydrogen bond    swelling dynamics
收稿日期: 2018-02-24     
ZTFLH:  O632.51  
基金资助:资助项目 陕西省教育厅专项科研计划(17JK0432),陕西省重大科技成果转化引导专项(2016KTCG01-17)
作者简介:

作者简介 杨 琴,女,1974年生,博士,副教授

图1  PAA hydrogel和CB[7]/PAA hydrogel的红外光谱图
图2  CB[7]/PAA hydrogel的1H NMR谱图
图3  CB[7]/PAA hydrogel的自愈示意图
图4  不同AA含量的CB[7]/PAA hydrogel样品在pH=7.6的溶胀动力学曲线
图5  不同AA含量的CB[7]/PAA hydrogel的溶胀速率随时间的变化
图6  CB[7]/PAA hydrogel样品在不同pH值条件下的溶胀动力学曲线
图7  CB[7]/PAA hydrogel(AA=1.2 mL)的溶胀速率随时间的变化
pH Sample n K D
4.0 AA1mL 0.5878 0.0095 0.0834
AA1.1mL 0.6779 0.0075 0.0953
AA1.2mL 0.5438 0.0035 0.1105
AA1.3mL 0.5657 0.0117 0.0782
AA1.4mL 0.5714 0.0129 0.0723
7.6 AA1mL 0.7478 0.0018 0.1023
AA1.1mL 0.6991 0.0027 0.1097
AA1.2mL 0.6510 0.0039 0.1278
AA1.3mL 0.5721 0.0109 0.0865
AA1.4mL 0.5834 0.0113 0.0813
10.0 AA1mL 0.5769 0.0082 0.0967
AA1.1mL 0.5866 0.0070 0.1024
AA1.2mL 0.5096 0.0046 0.1201
AA1.3mL 0.5789 0.0098 0.0985
AA1.4mL 0.5964 0.0108 0.0876
表1  CB[7]/PAA hydrogel在不同条件下的动力学指数、凝胶速率常数和水分子扩散系数
图8  CB[7]/PAA hydrogel的自愈机理示意图
[1] White S R, Sottos N R, Geubelle P H, et al.Autonomic healing of polymer composites[J]. Nature, 2001, 409: 794
[2] White S R, Moore J S, Sottos N R, et al.Restoration of large damage volumes in polymers[J]. Science, 2014, 344: 620
[3] Ahn B K, Lee D W, Israelachvili J N, et al.Surface-initiated self-healing of polymers in aqueous media[J]. Nat. Mater., 2014, 13: 867
[4] Haldar U, Bauri K, Li R, et al.Polyisobutylene based pH-responsive self-healing polymeric gels[J]. ACS Appl. Mater. Interfaces, 2015, 7: 8779
[5] Banerjee S L, Khamrai M, Kundu P P, et al.Synthesis of a self-healable and pH responsive hydrogel based on an ionic polymer/clay nanocomposite[J]. RSC Adv., 2016, 6(85): 81654
[6] Ding D, Guerette P A, Fu J, et al.From soft self-healing gels to stiff films in suckerin-based materials through modulation of crosslink density and β-sheet content[J]. Adv. Mater., 2015, 27(26): 3953
[7] Wool R P.Self-healing materials: a review[J]. Soft Matter., 2008, 4(4): 400
[8] Shi Y, Wang M, Ma C B, et al.A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer[J]. Nano Lett., 2015, 15: 6276
[9] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al.Self-healing and thermoreversible rubber fromSupra-molecular assembly[J]. Nature, 2008, 451: 977
[10] Montarnal D, Cordier P, Soulé-Ziakovic C, et al.Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea[J]. J. Polym. Sci. Part Polym. Chem., 2008, 46A: 7925
[11] Montarnal D, Tournilhac F, Hidalgo M, et al.Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers[J]. J. Am. Chem. Soc., 2009, 131: 7966
[12] Blaiszik B J, Kramer S L B,Grady M E, et al.Autonomic restoration of electrical conductivity[J]. Adv. Mater., 2012, 24: 398
[13] Ahn B K, Lee D W, Israelachvili J N, et al.Surface-initiated self-healing of polymers in aqueous media.[J]. Nature Mater., 2014, 13(9): 867
[14] Phadke A, Zhang C, Arman B, et al.Rapid self-healing hydrogels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4383
[15] Wang F P, Zhang J Y, Mou H P, et al.Swelling kinetics and theophylline controlled-release properties of pH-sensitive P (AM-AA-co-C8PhEO10Ac) hydrogel[J]. J. Funct. Polym., 2013, 26: 179(王芳平, 张珺瑛, 牟琥珀等. pH敏感性P(AM-AA-co-C8PhEO10-Ac)水凝胶溶胀动力学及其对茶碱的控释[J]. 功能高分子学报, 2013, 26: 179)
[16] Billiet T, Vandenhaute M, Schelfhout J, et al.A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J]. Biomaterials, 2012, 33: 6020
[17] Yang Q, Li X L, Jiang Y, et al.Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils[J]. Mater. Res. Innov., 2014, 18: 280
[18] Zhou J N.Preparation of chitosan/gelatin composite microspheres and study on its drug release property [D]. Xiangtan: Hunan University of Science and Technology, 2012(周佳男. 壳聚糖/明胶复合微球的制备及载药性能研究 [D]. 湘潭: 湖南科技大学, 2012)
[19] Shi Y L.Study on the preparation, structure and properties of pH/temperature-sensitive natural polymer hydrogels [D]. Shanghai: Donghua University, 2005(石艳丽. 温度及pH敏感天然高分子水凝胶的制备及结构性能表征 [D]. 上海: 东华大学, 2005)
[20] Zhang Y N, Wu S W, Xu J Y, et al.Preparation and performance characterization of electrospun drug loaded poly (vinyl alcohol)/chitosan nanofibrous membrane[J]. J. Zhejiang Univ.(Med. Sci.), 2013, 42: 644(章亚妮, 邬珊维, 徐佳瑶等. 聚乙烯醇/壳聚糖载药电纺纤维膜的制备及性能表征[J]. 浙江大学学报(医学版), 2013, 42: 644)
[21] Long R, Mayumi K, Creton C, et al.Time dependent behavior of a dual cross-link self-healing gel: Theory and experiments[J]. Macromolecules, 2014, 47: 7243
[22] Lei G C.Formation and control of porous structure of acrylate super-absorbent resin micro-spheres and mechanism research of pore-forming [D]. Xiamen: Xiamen University, 2009(雷光财. 丙烯酸系高吸水性树脂微球多孔结构的形成/控制及成孔机理研究 [D]. 厦门: 厦门大学, 2009)
[1] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[2] 徐春萍, 陈春悦, 张永航, 龚维, 班大明. 含磷聚合物型阻燃剂(PMP)对乙烯基酯树脂(VER)的阻燃改性[J]. 材料研究学报, 2021, 35(11): 843-849.
[3] 杨琴, 赵卫杰, 赵娜, 王若迪, 陈诚. 微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能[J]. 材料研究学报, 2020, 34(9): 691-696.
[4] 王闻宇, 刘亚敏, 金欣, 肖长发, 朱正涛, 林童. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度[J]. 材料研究学报, 2018, 32(3): 209-215.
[5] 李明春 辛梅华 李中皇 毛扬帆. 酰基侧链对O--酰化壳寡糖/聚乳酸共混膜氢键的影响[J]. 材料研究学报, 2011, 25(4): 337-341.
[6] 吴敏 朱蓉琪 盛兆碧 顾宜. 原位聚合法制备聚酰亚胺/滑石粉复合薄膜聚集态结构的研究[J]. 材料研究学报, 2009, 23(5): 472-477.
[7] 辛梅华; 廖耀祖; 李明春. O,O-双十二酰基壳聚糖/聚乳酸复合膜中氢键的作用[J]. 材料研究学报, 2008, 22(1): 72-77.
[8] 姚武; 钟文慧 . 混凝土损伤自愈的机理[J]. 材料研究学报, 2006, 20(1): 24-28.
[9] 张伟刚;成会明;周龙江;沈祖洪;周本濂. 纳米陶瓷/炭复合材料自愈合抗氧化行为[J]. 材料研究学报, 1997, 11(5): 487-490.
[10] 容敏智;曾汉民. 聚碳酸酯改性环氧树脂的结构与性能[J]. 材料研究学报, 1994, 8(2): 169-176.