Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 905-912    DOI: 10.11901/1005.3093.2018.166
  研究论文 本期目录 | 过刊浏览 |
一种环保延性水泥基复合材料的制备及其韧性
鲍文博(), 李维, 底高浩, 黄志强, 余芳
沈阳工业大学建筑与土木工程学院 沈阳 110870
Preparation and Ductility Characterization of an Environmental Friendly Toughening Cementitious Composite
Wenbo BAO(), Wei LI, Gaohao DI, Zhiqiang HUANG, Fang YU
(School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China)
引用本文:

鲍文博, 李维, 底高浩, 黄志强, 余芳. 一种环保延性水泥基复合材料的制备及其韧性[J]. 材料研究学报, 2018, 32(12): 905-912.
Wenbo BAO, Wei LI, Gaohao DI, Zhiqiang HUANG, Fang YU. Preparation and Ductility Characterization of an Environmental Friendly Toughening Cementitious Composite[J]. Chinese Journal of Materials Research, 2018, 32(12): 905-912.

全文: PDF(5214 KB)   HTML
摘要: 

使用尾矿砂替代ECC中的细骨料,借鉴ECC技术制备了尾矿砂替代天然砂的比率达50%的纤维增强尾矿砂水泥基复合材料(FRTCC),采用立方体抗压、直接拉伸、薄板弯曲和双面剪切等不同加载模式的实验系统研究了FRTCC的压缩、拉伸、弯曲和剪切韧性以及PVA纤维的增韧机制,以及PVA纤维掺量和水胶比对FRTCC延性的影响。提出了完全韧性比的概念和定义,并采用韧性比和韧性指数双特征参数表征了FRTCC的韧性。结果表明,这种材料具有环保和延性双重特征。PVA掺量与水胶比存在着交互作用,对FRTCC的韧性有显著的影响。PVA掺量与水胶的适当配比明显提高了FRTCC的延性和能量吸收能力,使FRTCC具有多裂缝开裂、应变硬化和延性破坏等特征。

关键词 无机非金属材料延性水泥基复合材料韧性表征尾矿砂PVA纤维环保    
Abstract

A fiber reinforced tailing cementitious composite (FRTCC) was prepared via engineered cementitious composite (ECC) technology. By replacing 50% natural send with tailing sand, the prepared composite presents distinct ductility and environmental friendly-features. The tensile, compressive, flexural and shear ductility of FRTCC as well as the toughening mechanism of polyvinyl alcohol (PVA) fiber were systematically investigated by means of cube compression-, direct tensile-, thin plate bending- and double shear-test. The influence of the content of PVA fiber and the ratio of water to binder on the ductility of FRTCC was examined. The definition of complete toughness ratio was proposed, and the toughness of FRTCC was characterized with a set of double characteristic parameters i.e. the toughness ratio and the toughness index. The results show that the content of PVA fiber and the ratio of water to binder exhibit remarkable synergistic effect on the ductility of FRTCC. The proper mix proportion can significantly improve the ductility and energy absorption capacity of FRTCC, thereby ensure that the FRTCC possesses characteristics such as cracking with multi-cracks, strain hardening and ductile fracture etc.

Key wordsinorganic non-metallic materials    toughening cementitious composite    characterization of toughness    tailing sand    PVA fiber    environmental friendliness
收稿日期: 2018-02-12     
基金资助:国家自然科学基金(51608331),辽宁省教育厅科学基金(LGD2016007)
作者简介:

作者简介 鲍文博,男,1958年生,博士

Mass ratio Volume fraction of fiber/%
Cement Flay ash Sand Tailings Water binder ratio Superplasticizer
1.00 1.20 0.39 0.39 0.40,0.45,0.50 0.02 1.5, 2.0
表1  FRTCC配合比
图1  立方体抗压实验结果
图2  直接拉伸应力应变实验曲线
图3  直接拉伸实验结果
图4  弯曲力-位移实验曲线
图5  弯曲实验结果
图6  剪切实验结果
[1] Van Tittelboom K, De Belie N, Lehmann F, et al.Acoustic emission analysis for the quantification of autonomous crack healing in concrete[J]. Constr. Build. Mater., 2012, 28: 333
[2] Van Tittelboom K, De Belie N.Self-healing in cementitious materials-a review[J]. Materials, 2013, 6: 2182
[3] Cao M L, Xu L, Zhang C.Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. J. Chin. Ceramic Soc., 2015, 43: 632(曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43: 632)
[4] Wille K, Naaman A E, El-Tawil S.Optimizing ultra-high-performance fiber-reinforced concrete[J]. Concr. Int., 2011, 33(9): 35
[5] Li V C.Tailoring ECC for special attributes: a review[J]. Int. J. Concr. Struct. Mater., 2012, 6(3): 135
[6] Herbert E N, Li V C.Self-healing of engineered cementitious composites in the natural environment [A]. Parra-Montesinos G J, Reinhardt H W, Naaman A E eds. High Performance Fiber Reinforced Cement Composites[M]. Dordrecht: Springer, 2012: 155
[7] Kan L L, Shi H S.Investigation of self-healing behavior of engineered cementitious composites (ECC) materials[J]. Constr. Build. Mater., 2012, 29: 348
[8] Chen B C, Ji T, Huang Q W, et al.Review of research on ultra-high performance concrete[J]. J. Archit. Civil Eng., 2014, 31(3): 1(陈宝春, 季韬, 黄卿维等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1)
[9] Huang X Y, Ranade R, Ni W, et al.Development of green engineered cementitious composites using iron ore tailings as aggregates[J]. Constr. Build. Mater., 2013, 44: 757
[10] Bao W B, Di G H, Chen S L, et al.Toughening properties of high performance tailings cementitious composites with environmental protection[J]. J. Funct. Mater., 2016, 47(11): 7(鲍文博, 底高浩, 陈四利等. 高性能环保型尾矿砂水泥基复合材料增韧性能研究[J]. 功能材料, 2016, 47(11): 7)
[11] Bao W B, Li L F, Di G H, et al.Mechanical properties of green toughness cementitious composite[J]. J. Shenyang Univ. Technol., 2016, 38: 697(鲍文博, 李林凤, 底高浩等. 绿色韧性水泥基复合材料力学性能[J]. 沈阳工业大学学报, 2016, 38: 697)
[12] Ding Y N, Liu S G.Study of the flexural and shear toughness of steel fiber reinforced self-compacting concrete[J]. China Civil Eng. J., 2010, 43(11): 55(丁一宁, 刘思国. 钢纤维自密实混凝土弯曲韧性和剪切韧性试验研究[J]. 土木工程学报, 2010, 43(11): 55)
[13] Li H D, Xu S L.Research on flexural properties and flexural toughness evaluation method of ultra high toughness cementitious composites[J]. China Civil Eng. J., 2010, 43(3): 32(李贺东, 徐世烺. 超高韧性水泥基复合材料弯曲性能及韧性评价方法[J]. 土木工程学报, 2010, 43(3): 32)
[14] China Association for Engineering Construction Standardization. CECS 13-2009 Standard test methods for fiber reinforced concrete [S]. Beijing: China Planning Press, 2010(中国工程建设标准化协会. CECS 13- 2009 纤维混凝土试验方法标准 [S]. 北京: 中国计划出版社, 2010)
[15] Deng Z C.High Performance Synthetic Fiber Reinforced Concrete [M]. Beijing: Science Press, 2003(邓宗才. 高性能合成纤维混凝土 [M]. 北京: 科学出版社, 2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.