Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 177-183    DOI: 10.11901/1005.3093.2018.131
  研究论文 本期目录 | 过刊浏览 |
δ 铁素体Mn-Al系TRIP钢冷轧退火过程的组织性能
胡智评1, 许云波1(), 刘慧2, 王乐2
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819;
2 山东钢铁股份有限公司钢铁研究院 济南 250101;
Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite
Zhiping HU1, Yunbo XU1(), Hui LIU2, Le WANG2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
2 Research Instituteof Iron and Steel of Shandong Iron and Steel Group, Jinan 250101, China;
引用本文:

胡智评, 许云波, 刘慧, 王乐. 含δ 铁素体Mn-Al系TRIP钢冷轧退火过程的组织性能[J]. 材料研究学报, 2018, 32(3): 177-183.
Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. Chinese Journal of Materials Research, 2018, 32(3): 177-183.

全文: PDF(5692 KB)   HTML
摘要: 

研究了临界区退火温度和退火时间对含δ铁素体的Mn-Al系冷轧TRIP钢(Fe-0.18C-6.4Mn-2.8Al)的组织和性能演变行为的影响。结果表明,随着临界区退火温度的提高和退火时间的延长,实验钢的残余奥氏体(RA)含量和强塑积呈现先增大后减小的趋势。在750℃退火2 min实验钢的组织由δ铁素体、临界区铁素体及残余奥氏体组成,其RA含量为24.7%,抗拉强度为773 MPa,断后延伸率39.4%,强塑积为30.46 GPa%。RA主要集中在粗大δ铁素体与原马氏体边界、原马氏体区域内再结晶铁素体晶界周围以及粗大δ铁素体内的亚晶界附近。

关键词 金属材料δ铁素体TRIP钢;力学性能残余奥氏体    
Abstract

The microstructure evolution and mechanical properties of a cold-rolled Mn-Al transformation-induced plasticity (TRIP) steel with δ ferrite were investigated after annealed at different intercritical annealing temperature for different time. The results show that as the intercritical annealing temperature and time going up, the content of retained austenite (RA) and the product of strength and elongation (PSE) increased first and then decrease. The microstructure of the steel after annealing at 750℃ for 2 min consists of δ ferrite, intercritical ferrite and 24.7% retained austenite, which exhibited a tensile strength of 773 MPa, elongation of 39.4% and the product of strength and elongation of 30.46 GPa%. RA mainly exits at the boundaries between bulky δ ferrite and original martensite, around the recrystallization ferrite from original martensite area, and around the sub-grain boundaries inside δ ferrite.

Key wordsmetal materials    TRIP steel with δ ferrite;    mechanical property    retained austenite
收稿日期: 2017-10-09     
ZTFLH:  TG113  
基金资助:国家自然科学基金(51174059,51404155,U1260204)、中央高校基本科研业务费项目(N130407003)、新世纪优秀人才支持计划(NCET-13-0111)、辽宁省高等学校优秀人才支持计划(LR2014007)
作者简介:

作者简介 胡智评,男,1989年生,博士生

图1  轧制工艺规程
图2  不同Al含量实验钢的相图
图3  不同奥氏体化温度下实验钢的组织
图4  冷轧实验钢在不同温度退火后的SEM形貌
Temperature
/°C
Rp0.2
/MPa
Rm
/MPa
Δ
%
Rp0.2/Rm PSE
/GPa%
RA
/%
650 667 759 20.8 0.87 15.8 12.4
700 652 751 24.1 0.85 18.2 18.2
750 631 783 39.4 0.80 30.5 24.9
800 520 920 18.3 0.57 17.0 18.6
850 789 1054 11.0 0.74 11.6 10.9
表1  不同临界区退火温度钢的力学性能及残余奥氏体含量
图5  在750℃退火2 min实验钢的TEM形貌
图6  在750℃退火2 min实验钢的EBSD结果
图7  在750℃退火不同时间钢的SEM形貌
Time
/min
Rm
/MPa
Δ
%
PSE
GPa%
RA
%
1 726 25 18.1 9.7
2 787 45 35.4 24.7
5 927 20 18.5 13.3
10 951 14 13.3 10.1
表2  不同临界区等温退火时间钢的力学性能和残余奥氏体含量
[1] Dong H, Cao W Q, Shi J, et al.Microstructure and Performance Control Technology of the 3rd Generation Auto Sheet Steels[J]. Iron & Steel, 2011, 46(6): 1(董瀚, 曹文全, 时捷等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1)
[2] Cao J L, Zhao A M, Li Z, et al.Mechanism of strengthening and plasticity improvement in warm rolling medium manganese steel with ultrafine grains[J]. J Univ Sci Technol B, 2013, 35(11): 1465
[3] Zhao Z Z, Yin H X, Zhao A M, et al.Effect of continuous annealing process on microstructure and mechanical properties of 5% Mn ultrafine grain TRIP steel[J]. Mater. Sci. Technol., 2014, 22(5): 54
[4] Zhan W, Hu J, Xu G F, et al.Effect of ART-annealing on microstructure and mechanical properties of continuous casting billet[J]. Iron & Steel, 2013, 48(3): 66(占炜, 胡俊, 徐国富等. 逆相变退火对连铸坯组织和力学性能的影响[J], 钢铁, 2013, 48(3): 66)
[5] Seawoong L, Seok J L, DeCooman B C. Austenite stability of ultrafine grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Mater., 2011, 65(3): 225
[6] Gibbs P J, DeCooman B C, Brown D W, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel[J]. Mater. Sci. Eng., A, 2014, 609(15): 323
[7] Sohn S S, Lee B J, Lee S, et al.Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C-3.5 Mn-5.8 Al lightweight steel[J]. Acta Mater., 2013, 61(13): 5050
[8] Park S J, Hwang B, Lee K H, et al.Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum[J]. Scripta Mater., 2013, 68(6): 36
[9] Lee S, Lee S J, DeCooman B C, Reply to comments on “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning”[J]. Scripta Mater., 2012, 66(10): 832
[10] Enloe C M, Findley K O, Parish C M, et al.Compositional evolution of microalloy carbonitrides in a Mo-bearing microalloyed steel[J]. Scripta Mater., 2013, 68(1): 55
[11] Zhao H, Shi J, Li N, et al.Effects of Si on the Microstructure and Mechanical Property of Medium Mn Steel Treated by Quenching and Partiontion Process[J]. Chin J Mater Res, 2011, 25(1): 45(赵晖, 时捷, 李楠等. Si对中锰钢淬火配分组织和性能的影响[J]. 材料研究学报, 2011, 25(1): 45)
[12] R. Wei, Enomoto M, Hadian R, et al. Growth of austenite from as-quenched martensite during intercritical annealing in an Fe-0.1C-3Mn-1.5Si alloy[J]. Acta Mater., 2013, 61(2), 697
[13] Xie J P, Wang A Q, Wang W Y, et al.Microstructural investigation of cast medium-manganese austenitic steel with composite surface[J]. Mater. Sci. Eng., A, 2008, 743(15): 483
[14] Zhang R, Cao W Q, Peng Z J, et al.Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel[J]. Mater. Sci. Eng., A, 2013, 583(42): 84
[15] Yi H L, Lee K Y, Bhadeshia H K D H. Mechanical stabilisation of retained austenite in δ-TRIP steel[J]. Mater. Sci. Eng., A, 2011, 528(18): 5900
[16] Cai Z H, Ding H, Misra R D K, et al. Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., A, 2012, 26(12): 378
[17] Cao W Q, Wang C, Shi J, et al.Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing[J]. Mater. Sci. Eng., A, 2011, 528(22-23): 6661
[18] Santofimia M J, Zhao J, Petrov P, et al.Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Mater., 2011, 59(15): 6059
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.