Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 184-190    DOI: 10.11901/1005.3093.2018.124
  研究论文 本期目录 | 过刊浏览 |
不同加载方式下微焊点的蠕变性能分析
孔祥霞, 孙凤莲(), 杨淼森
哈尔滨理工大学材料科学与工程学院 哈尔滨 150040;
Analysis of Creep Performance of Micro Solder Joints under Different Loading Mode
Xiangxia KONG, Fenglian SUN(), Miaosen YANG
School of Material Science and Engineering, Harbin University of Science and Technology,Harbin 150040, China;
引用本文:

孔祥霞, 孙凤莲, 杨淼森. 不同加载方式下微焊点的蠕变性能分析[J]. 材料研究学报, 2018, 32(3): 184-190.
Xiangxia KONG, Fenglian SUN, Miaosen YANG. Analysis of Creep Performance of Micro Solder Joints under Different Loading Mode[J]. Chinese Journal of Materials Research, 2018, 32(3): 184-190.

全文: PDF(954 KB)   HTML
摘要: 

利用纳米压痕技术分别采用阶梯加载和一次加载方式,研究了一种SnAgCu无铅钎料BGA(ball grid array)微焊点体钎料的蠕变行为。结果表明:在载荷同为60 mN、保载时间为300 s条件下,阶梯加载条件下的蠕变位移明显小于一次加载条件下的蠕变位移,而蠕变硬度却是一次加载下的1.87倍,蠕变硬度显著提高。在阶梯加载方式下三个阶段的压痕蠕变不断降低,蠕变硬度不断升高。拟合计算出阶梯加载和一次加载条件下的蠕变应力指数n,阶梯加载条件下微焊点的应力指数n比一次加载条件下提高1.31倍。在阶梯加载条件下产生的应变硬化,提高了微焊点的抗蠕变性能。

关键词 金属材料纳米压痕微焊点抗蠕变性能阶梯加载应力指数    
Abstract

Creep behavior of the ball grid array (BGA) of lead-free solder joints of Sn-0.7Ag-0.5Cu-3.5Bi-0.05Ni (SACBN) was investigated via nanoindentation by step loading-unloading and single loading-unloading respectively. The results show that: for the two different test modes with the same load 60 mN and holding time 300 s, the creep displacement of solder joints by step loading-unloading is significantly less than that by single loading-unloading. However, the creep hardness for the former case is 1.87 times of that of the later one. The indentation creep decreased at three stages for the case of step loading-unloading, however the creep hardness increased. The creep exponent n was obtained by fitting calculation and found that the n value for the step loading-unloading is 1.31 times of that for single loading-unloading. The creep resistance performance of micro solder joints was improved by strain hardening during the process of step loading-unloading.

Key wordsmetallic materials    nanoindentation    micro solder joints    creep resistance    step loading-unloading    stress index
收稿日期: 2017-09-07     
ZTFLH:  TG425  
基金资助:国家自然科学基金资助项目51174069
作者简介:

作者简介 孔祥霞,女,1989年生,博士生

图1  一次加载-卸载示意图
图2  阶梯加载-卸载示意图
图3  纳米压痕测试后的BGA焊点整体显微组织
图4  钎料合金的典型微压痕曲线
图5  压痕过程中蠕变时间-蠕变位移示意图
图6  不同加载方式下SACBN BGA焊点的位移-加载力曲线(a) 阶梯加载方式下微焊点的位移-加载力曲线,(b) 一次加载方式下微焊点的位移-加载力曲线
图7  不同加载方式下SACBN BGA焊点的蠕变深度-蠕变时间曲线(a)阶梯加载方式下微焊点的蠕变深度-蠕变时间曲线, (b) 一次加载方式下微焊点的蠕变深度-蠕变时间曲线
图8  压入蠕变示意图[17]
Solder joints Loading mode Creep Hardness/MPa Indentation creep CIT/%
Cu/SACBN/Cu Step loading-unloading Step 1 2373.74 38.97
Step 2 4962.69 20.19
Step 3 8784.51 15.67
Loading-unloading 4686.30 25.71
表1  不同加载方式下微焊点的蠕变硬度及压入蠕变率(CIT)
图9  微焊点Cu/SACBN/Cu不同加载方式下的lnε˙-lnH关系曲线 (a) 阶梯加载下微焊点的lnε˙-lnH关系曲线, (b) 一次加载下微焊点的lnε˙-lnH关系曲线
Solder joints Loading mode Stress index n
Cu/SACBN/Cu Step loading-unloading Step 1 6.41
Step 2 15.89
Step 3 20.53
Loading-unloading 15.72
表2  微焊点Cu/SACBN/Cu不同加载方式下蠕变应力指数
[1] Zhang X P, Yin L M, Yu C B.Research and application progress on electronic and photonic packaging and lead-free solder[J]. Chin. J. Mater. Res., 2009, 22(1): 1(张新平, 尹立孟, 于传宝. 电子和光子封装无铅钎料的研究和应用进展[J]. 材料研究学报, 2009, 22(1): 1)
[2] Yin L M, Li Z K, Liu B.Research on vibration fatigue behavior of micro solder joints under electromigration effects[J]. Electronic Components and Materials, 2011, 30(4): 63(尹立孟, 李镇康, 刘斌. 电迁移作用下的微焊点振动疲劳行为研究[J]. 电子元件与材料, 30(4): 63)
[3] Han Y D, Jing H Y, Nai S M L, et al. Creep mitigation in Sn-Ag-Cu composite solder with Ni-coated carbon nanotubes[J]. J. Mater. Sci.: Mater. Electron., 2011, 23(5): 1108
[4] Mohammad H, Muhannad M, Jeffrey C S.Characterization of aging effects in lead free solder joints using nanoindentation[J]. 2013 Electronic Components & Technology Conference, 2013, 166
[5] Mu D, Huang H, Mcdonald S D, et al.Creep and mechanical properties of Cu6Sn5 and (Cu, Ni)6Sn5 at elevated temperatures[J]. J. Electron. Mater., 2013, 42(2): 304
[6] Wang J X, Lai Z M, Sun D D.Experiment research of Sn-Cu-Ni solder joint by nanoindentation[J]. Transactions of the China Welding Institution, 2011, 32(12): 59(王俭辛, 赖忠民, 孙丹丹. Sn-Cu-Ni焊点纳米压痕试验分析[J]. 焊接学报, 2011, 32(12): 59
[7] Zhang Q Y, Zhuang H S.Brazing and Soldering Manual[M]. Beijing: China Machine Press, 2008(张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2007)
[8] Zhao J, Qi L, Wang X M, et al.Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder[J]. J. Alloy. Compd., 2004, 375(1-2): 196
[9] Li G Y, Shi X Q.Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints[J]. Transaction of Nonferrous Society of China, 2006, 16(z1): 739
[10] Zhang L.Study on reliability of SnAgCu based lead-free soldered joint and related theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(张亮. SnAgCu系无铅焊点可靠性及相关理论研究[D]. 南京: 南京航空航天大学, 2011)
[11] Li X, Sun F L, Liu Y, et al.The resistant of thermal shock and aging properties of SAC-Bi-Ni solder[A]. China Academic Journal Electronic Publishing House[C]. Beijing, 2012(李霞, 孙凤莲, 刘洋等. SAC-Bi-Ni 焊点抗热冲击及抗热时效性能研究[A]. 第八届全国材料科学与图像科技学术会议论文集[C]. 北京, 2012)
[12] Liu Y, Sun F L, Liu Y, et al.Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC-Bi-Ni/Cu solder joints[J]. J. Mater. Sci.: Mater. Electron., 2014, 25(6): 2627
[13] Gao F, Nishikawa H, Takemoto T, et al.Mechanical properties versus temperature relation of individual phases in Sn-3.0Ag-0.5Cu lead-free solder alloy[J]. Microelectron. Reliab., 2009, 49(3): 296
[14] Chromik R R, Vinci R P, Allen S L, et al.Measuring the mechanical properties of Pb-free solder and Sn-based intermetallics by nanoindentation[J]. J. Mine. Metals, Mater., 2003, 55(6): 1016
[15] Wang F J, Qian Y Y, Ma X.Research on the creep of SnAgCu lead-free solder by indentation method[A]. 2004 Chinese electronics manufacturing technology forum[C]. Beijing, 2004(王凤江, 钱乙余, 马鑫. SnAgCu无铅钎料焊点蠕变压痕法研究[A]. 2004 中国电子制造技术论坛[C]. 北京, 2004)
[16] Han Y D, Jing H Y, Nai S M L, et al. Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder[J]. J. Electron. Mater., 2010, 39(2): 223
[17] BS EN ISO 14577-1-2015, Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method
[18] Mayo M J, Siegel R W, Narayanasamy A, et al.Mechanical properties of nanophase TiO2 as determined by nanoindentation[J]. J. Mater. Res., 1990, 5(5): 1073
[19] Liu Y C, Teo J W R, Tung S K, et al. High-temperature creep and hardness of eutectic 80Au/20Sn solder[J]. J. Alloy. Compd., 2007, 12142(1-2): 340
[20] Ma Z S, Long S G, Zhou Y C, et al.Indentation scale dependence of tip-in creep behavior in Ni thin films[J]. Scr. Mater., 2008, 59(2): 195
[21] Hsieh T H, Huang Y S, Shen M Y.Mechanical properties and toughness of carbon aerogel/epoxy polymer composites[J]. J Mater Sci, 2015, 50(8): 3258
[22] Mayo M J, Siegel R W, Liao Y X, et al.Nanoindentation of nanocrystalline ZnO[J]. J. Mater. Res., 1992, 7(4): 973
[23] Gao F, Nishikawa H, Takemoto T, et al.Mechanical properties versus temperature relation of individual phases in Sn-3.0Ag-0.5Cu lead-free solder alloy[J]. Microelectron. Reliab., 2009, 49(3): 296
[24] Mu X Y.Creep Mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1990(穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990)
[25] GB/T 22458-2008 General rules of instrumented nanoindentation test 22458-2008 General rules of instrumented nanoindentation test. Beijing: Standards Press of China, 2009(GB/T 22458-2008, 仪器化纳米压入试验方法通则 22458-2008, 仪器化纳米压入试验方法通则. 北京: 中国标准出版社, 2009)
[26] Han Y D, Jing H Y, Nai S M L,et al. Indentation size effect on the creep behavior of a SnAgCu solder[J]. Int. J. Mod. Phys. B, 2012, 24(24): 267
[27] El-Daly A A, El-Taher A M, Dalloul T R. Improved creep resistance and thermal behavior of Ni-doped Sn-3.0Ag-0.5Cu lead-free solder[J]. J. Alloy. Compd., 2014, 587(3): 32
[28] Cui Z Q, Qin Y C.The Metallography and Heat Treatment[M]. Beijing: China Machine Press, 2007(崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.