Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 675-684    DOI: 10.11901/1005.3093.2018.105
  本期目录 | 过刊浏览 |
7B04铝合金的超塑变形行为及其机理
王建1, 杨文静1, 李卓梁1, 丁桦1(), 张宁2, 侯红亮2
1 东北大学材料科学与工程学院 沈阳 110819
2 中国航空制造技术研究院 北京 100024
Superplastic Behavior and Deformation Mechanism of 7B04 Al-alloy
Jian WANG1, Wenjing YANG1, Zhuoliang LI1, Hua DING1(), Ning ZHANG2, Hongliang HOU2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
引用本文:

王建, 杨文静, 李卓梁, 丁桦, 张宁, 侯红亮. 7B04铝合金的超塑变形行为及其机理[J]. 材料研究学报, 2018, 32(9): 675-684.
Jian WANG, Wenjing YANG, Zhuoliang LI, Hua DING, Ning ZHANG, Hongliang HOU. Superplastic Behavior and Deformation Mechanism of 7B04 Al-alloy[J]. Chinese Journal of Materials Research, 2018, 32(9): 675-684.

全文: PDF(6811 KB)   HTML
摘要: 

在470~530℃、3×10-4~1×10-2 s-1条件下对7B04铝合金进行超塑拉伸,在530℃、3×10-4 s-1的条件下得到了1663%的最大延伸率。计算结果表明,应变速率敏感性指数m的最大值为0.63。在不同初始应变速率条件下变形激活能Q的计算值分别为158.44 kJ/mol、188.13 kJ/mol、177.78 kJ/mol和250.54 kJ/mol。建立7B04铝合金高温变形本构方程并绘制了R-W-S变形机理图。结合微观组织演变和计算结果,分析了超塑变形机理。结果表明,7B04铝合金的主要变形机理为晶格扩散控制、位错滑移协调的晶界滑动。

关键词 金属材料超塑性高温拉伸7B04铝合金本构方程变形机理图    
Abstract

Superplastic tensile tests were carried out for 7B04 Al-alloy at 470~530℃ with initial strain rates within a range of 3×10-4 s-1 to 1×10-2 s-1. Among others the alloy presents the maximum elongation of 1663% at 530℃with the initial strain rate 3×10-4 s-1. Calculation results showed that the maximum strain rate sensitivity index m was 0.63 and the deformation activation energy Q were 158.44 kJ/mol, 188.13 kJ/mol, 177.78 kJ/mol, and 250.54 kJ/mol respectively corresponding to initial strain rates 1×10-2 s-1, 3×10-3 s-1 and 1×10-3 s-1, 3×10-4 s-1. A constitutive equation was established to describe the hot deformation behavior. The R-W-S deformation mechanism maps of the alloy were established. The superplastic deformation mechanism was analyzed by considering the microstructure evolution and the calculation results. It follows that the superplastic deformation mechanism of the 7B04 Al-alloy is mainly the dislocation slip accommodated grain boundary sliding controlled by lattice diffusion.

Key wordsmetallic materials    superplasticity    high temperature tensile    7B04 aluminum alloy    constitutive equation    deformation mechanism map
收稿日期: 2018-01-15     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51334006)
作者简介:

作者简介 王 建,男,1992年生,硕士

Zn Mg Cu Mn Ti Fe Si Al
5.96 2.22 1.60 0.4 0.04 0.06 0.03 Bal.
表1  7B04铝合金化学成分(质量分数,%)
图1  高温拉伸试样尺寸的示意图
图2  高温拉伸真应力-真应变曲线
图3  最大延伸率断件图
Temperature
/℃
ε˙/s-1
3×10-4 1×10-3 3×10-3 1×10-2
470 405 297 210 171
485 439 422 257 212
500 723 507 327 195
515 993 564 441 168
530 1663 801 292 112
表2  7B04铝合金高温拉伸延伸率
图4  高温拉伸峰值应力-温度关系图
图5  lnσ-lnε˙关系图
图6  ln[sinh(ασ)]-1000/T关系图
图7  lnZ-ln[sinh(ασ)]关系图
图8  7B04铝合金高温拉伸前后的显微组织
图9  7B04铝合金高温拉伸前后变形段晶粒的轴比分布
图10  7B04铝合金在不同条件下的高温拉伸断口形貌
Deformation mechanism Constitutive equation n
Diffusional flow Nabarro-Herring ε˙1=14DLd2Eb3kTσE 1
Coble ε˙2=50Dgbbd3Eb3kTσE 1
Grain boundary sliding
(GBS)
Lattice diffusion controlled ε˙3=6.4×109DLd2σE2 2
Pipe diffusion controlled ε˙4=3.2×1011αDpd2σE4 4
Grain boundary diffusion controlled ε˙5=5.6×108Dgbbd3σE2 2
Slip Harper-Dorn ε˙6=1.7×10-11DLb2Eb3kTσE 1
Lattice diffusion controlled ε˙7=1011DLb2σE5 5
Pipe diffusion controlled ε˙8=5×1012Dpb2σE7 7
表3  不同变形机理对应的本构方程
Temperature/℃ ε˙/s-1 (d /b)×104 (σ /E)×10-4
470 1×10-2 2.80 4.45
470 3×10-3 2.80 3.32
470 1×10-3 2.80 2.17
470 3×10-4 2.80 1.41
530 1×10-2 2.80 2.31
530 3×10-3 2.80 1.18
530 1×10-3 2.80 0.69
530 3×10-4 2.80 0.24
表4  R-W-S变形机理图中的实验点坐标值
图11  7B04铝合金的R-W-S变形机理图
[1] Chen X M, Song R G, Li J.Current research status and development trends of 7xxx series aluminum alloys[J]. Mater. Rev., 2009, 23(2): 67(陈小明, 宋仁国, 李杰. 7xxx系铝合金的研究现状及发展趋势[J]. 材料导报, 2009, 23(2): 67)
[2] Cong F G, Zhao G, Tian N, et al.Research progress and development trend of strengthening-toughening of ultra-high strength 7xxx aluminum alloy[J]. Light Alloy Fabric. Technol., 2012, 40(10): 23(丛福官, 赵刚, 田妮等. 7xxx系超高强铝合金的强韧化研究进展及发展趋势[J]. 轻合金加工技术, 2012, 40(10): 23)
[3] Wang H, Fu G F, Sun J H, et al.Present research and developing trends of ultra high strength aluminum alloys[J]. Mater. Rev., 2006, 20(2): 58(王洪, 付高峰, 孙继红等. 超高强铝合金研究进展[J]. 材料导报, 2006, 20(2): 58)
[4] Li X H, Chen L J, Zhang L Y.Experimental investigation on forming properties of 7B04 super-hardness aluminum alloy sheets[J]. J. Shenyang Univ. Technol., 2005, 27: 494(李秀华, 陈立佳, 张凌云. 7B04超硬铝合金板材成形性能的试验研究[J]. 沈阳工业大学学报, 2005, 27: 494)
[5] Ding H.Material Process Metallurgy [M]. Beijing: Metallurgical Industry Press, 2016(丁桦. 材料成形金属学 [M]. 北京: 冶金工业出版社, 2016)
[6] Cao F R.Metal Superplasticity [M]. Beijing: Metallurgical Industry Press, 2014(曹富荣. 金属超塑性 [M]. 北京: 冶金工业出版社, 2014)
[7] Zhu Q F, Sun Z M, Zhu B H, et al.Study on fracture process of 7B04 aluminum alloy[J]. New Technol. New Process, 2008, (11): 83(朱其芳, 孙泽明, 朱宝宏等. 7B04铝合金断裂过程的研究[J]. 新技术新工艺, 2008, (11): 83)
[8] Li H Y, Liu J J, Yu W C, et al.Effects of solution treatment on microstructures and properties of 7B04 aluminum alloy[J]. Chin. J. Nonferr. Met., 2016, 26: 252(李红英, 刘蛟蛟, 余玮琛等. 固溶处理对7B04铝合金组织及性能的影响[J]. 中国有色金属学报, 2016, 26: 252)
[9] Bai X X, Liu H L, Han Y, et al.Effects of different aging processes on properties of 7B04 aluminum alloy[J]. Light Alloy Fabric. Technol., 2015, 43(5): 54(白晓霞, 刘洪雷, 韩颖等. 7B04铝合金不同时效工艺对其性能的影响[J]. 轻合金加工技术, 2015, 43(5): 54)
[10] Li N K, Lü X Y, Cui J Z.Effect of processing way and aging treatment on properties and microstructures of 7B04 aluminum alloy[J]. Trans. Nonferr. Met. Soc. China, 2018, 18: 541
[11] Li Z H, Xiong B Q, Zhang Y A, et al.Influence of aging tempers on mechanical and corrosion properties of a high strength 7B04 aluminium alloy pre-stretched plate[J]. Chin. J. Rare Met., 2008, 32: 794(李志辉, 熊柏青, 张永安等. 时效制度对7B04高强铝合金力学及腐蚀性能的影响[J]. 稀有金属, 2008, 32: 794)
[12] Ru J G, Yi L N.Research about fatique and fracture properties of 7B04 aluminium alloy[J]. Light Alloy Fabric. Technol., 2007, 35(10): 38(汝继刚, 伊琳娜. 7B04铝合金疲劳断裂性能研究[J]. 轻合金加工技术, 2007, 35(10): 38)
[13] Jian H G, Jiang F, Wen K, et al.Fatigue fracture of high-strength Al-Zn-Mg-Cu alloy[J]. Trans. Nonferr. Met. Soc. China, 2009, 19: 1031
[14] Jin X, Wan M, Li C.Effect of creep age forming on fatigue for 7B04 aluminum alloy[J]. Forg. Stamp. Technol., 2011, 36: 124(金兴, 万敏, 李超. 蠕变时效成形对7B04铝合金疲劳性能的影响[J]. 锻压技术, 2011, 36: 124)
[15] Chen Y, Ding H, Cai Z H, et al.Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy[J]. Mater. Sci. Eng., 2016, 650A: 396
[16] Yang C, Wang J J, Ma Z Y, et al.Friction stir welding and low-temperature superplasticity of 7B04 Al Sheet[J]. Acta Metall. Sin., 2015, 51: 1449(杨超, 王继杰, 马宗义等. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究[J]. 金属学报, 2015, 51: 1449)
[17] Zhang N, Wang Y Q, Hou H L, et al.Superplastic deformation behavior of 7B04 Al alloy[J]. J. Mater. Eng., 2017, 45(4): 27(张宁, 王耀奇, 侯红亮等. 7B04铝合金超塑性变形行为 [J]. 材料工程, 2017, 45(4): 27)
[18] Chen M, Ye L Y, Sun D X, et al.Effect of heating rate on grain structure and superplasticity of 7B04 aluminum alloy sheets[J]. J. Mater. Eng., 2017, 45: 112(陈敏, 叶凌英, 孙大翔等. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45: 112)
[19] Shin D H, Park K T.Directional cavity stringer formation in a superplastic 7075 Al alloy[J]. Mater. Sci. Eng., 1999, 268A: 55
[20] Han W, Lü C Q, Zhang Y.Flow stress behavior of 7B04-T6 aluminum alloy sheet during warm tensile[J]. Met. Funct. Mater., 2011, 18(2): 51(韩伟, 吕彩琴, 张翼. 7B04-T6铝合金板材温拉伸流变应力行为研究[J]. 金属功能材料, 2011, 18(2): 51)
[21] Zhang Z, Lang L H, Li T, et al.Constitutive equations of high strength aluminum alloy sheet 7B04-T6 under warm tension[J]. J. Beijing Univ. Aeronaut. Astronaut., 2009, 35: 600(张志, 郎利辉, 李涛等. 高强度铝合金7B04-T6板材温拉伸本构方程[J]. 北京航空航天大学学报, 2009, 35: 600)
[22] Iwasaki H, Mabuchi M, Higashi K.Plastic cavity growth during superplastic flow in AA 7475 Al alloy containing a small amount of liquid[J]. Acta Mater., 2001, 49: 2269
[23] Jiang X G, Cui J Z, Ma L X.Cavity nucleation in superplastic deformation of 7475 high strength aluminium alloy[J]. J. Northeast Univ. Technol., 1991, 12: 459(蒋兴钢, 崔建忠, 马龙翔. 7475高强铝合金超塑变形空洞形核研究[J]. 东北工学院学报, 1991, 12: 459)
[24] Jiang X G, Cui J Z, Ma L X.Cavity growth behavior of 7475 aluminium alloy in superplastic deformation[J]. J. Northeast Univ. Technol., 1991, 12: 48(蒋兴钢, 崔建忠, 马龙翔. 7475铝合金超塑变形空洞长大的研究[J]. 东北工学院学报, 1991, 12: 48)
[25] Dieguez T, Burgue?o A, Svoboda H.Superplasticity of a friction stir processed 7075-T651 aluminum alloy[J]. Proced. Mater. Sci., 2012, 1: 110
[26] Duan Y L, Xu G F, Zhou L Q, et al.Achieving high superplasticity of a traditional thermal-mechanical processed non-superplastic Al-Zn-Mg alloy sheet by low Sc additions[J]. J. Alloy. Compd., 2015, 638: 364
[27] Zhao W J, Ding H, Cao F R, et al.Mechanical behaviors of Ti6Al4V alloy during low-temperature superplastic deformation[J]. Chin. J. Mater. Res., 2008, 22: 269(赵文娟, 丁桦, 曹富荣等. Ti6Al4V合金的低温超塑性拉伸变形行为[J]. 材料研究学报, 2008, 22: 269)
[28] Chen B, Tian X L, Li X L, et al.Hot deformation behavior and processing maps of 2099 Al-Li alloy[J]. J. Mater. Eng. Perform., 2014, 23: 1929
[29] Xiang H, Pan Q L, Yu X H, et al.Superplasticity behaviors of Al-Zn-Mg-Zr cold-rolled alloy sheet with minor Sc addition[J]. Mater. Sci. Eng., 2016, 676A: 128
[30] Guan Z P, Ma P K, Song Y Q.Analysis of fracture during superplastic tension[J]. Acta Metall. Sin., 2013, 49: 1003(管志平, 马品奎, 宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49: 1003)
[31] Qiao Z W.The effect of deformation processing on the microstructure and superplastic properties of 7475 Al alloy [D]. Changsha: Hunan University, 2007(乔志伟. 变形条件对7475铝合金组织和超塑性性能的影响 [D]. 长沙: 湖南大学, 2007)
[32] Wen X.Research on superplasticity and cavity behavior of Al-Zn-Mg-Cu alloy [D]. Shenyang: Northeastern University, 2015(温学. 铝锌镁铜合金超塑性及空洞行为的研究 [D]. 沈阳: 东北大学, 2015)
[33] Kim W J, Taleff E, Sherby O D.A proposed deformation mechanism for high strain-rate superplasticity[J]. Scr. Metall. Mater., 1995, 32: 1625
[34] Zhou G, Ding H, Li Z L, et al.Superplastic behavior and deformation mechanisms of Al-12.7Si-0.7Mg alloy[J]. J. Northeast. Univ.(Nat. Sci.), 2012, 33: 965(周舸, 丁桦, 李卓梁等. Al-12.7Si-0.7Mg合金超塑性变形行为及变形机理[J]. 东北大学学报(自然科学版), 2012, 33: 965)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.