Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 713-720    DOI: 10.11901/1005.3093.2017.795
  本期目录 | 过刊浏览 |
分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能
高荣贞1,2, 李晓冬3, 刘文凤4, 尹艳红1,2(), 杨书廷1,2
1 动力电源及关键材料国家地方联合工程实验室 新乡 453007
2 河南师范大学化学化工学院 新乡 453007
3 洛阳师范学院化学化工学院 洛阳 471022
4 河南电池研究院 新乡 453007
Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C
Rongzhen GAO1,2, Xiaodong LI3, Wenfeng LIU4, Yanhong YIN1,2(), Shuting YANG1,2
1 National & Local Joint Engineering Laboratory for Motive Power and Key Materials, Xinxiang 453007, China;
2 School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
3 College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
4 Henan Battery Research Institute, Xinxiang 453007, China
引用本文:

高荣贞, 李晓冬, 刘文凤, 尹艳红, 杨书廷. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能[J]. 材料研究学报, 2018, 32(9): 713-720.
Rongzhen GAO, Xiaodong LI, Wenfeng LIU, Yanhong YIN, Shuting YANG. Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C[J]. Chinese Journal of Materials Research, 2018, 32(9): 713-720.

全文: PDF(5795 KB)   HTML
摘要: 

将柠檬酸和Super P (SP)作为碳源用喷雾干燥技术制备出具有分级结构的类球形MgFe2O4/C (MFO/C)复合材料,使用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、X射线光电子能谱仪(XPS)和电化学测试等手段表征了样品的形貌、结构和电化学性能。结果表明,在电流密度为0.5 C (500 mA∙g-1)的条件下这种复合材料的首次放电比容量为1162.7 mAh∙g-1,200次循环后比容量稳定在约734.5 mAh∙g-1。在电流密度为1C (1000 mA∙g-1)条件下,200次循环后比容量仍保持在约580.4 mAh∙g-1。具有优异的循环和倍率性能的原因,可能是SP和柠檬酸分解生成的晶粒间碳形成了良好的导电网络,使材料的导电性提高并缓解了在连续充放电过程中活性物质的团聚和体积膨胀。

关键词 金属基复合材料负极材料喷雾干燥铁酸镁锂离子电池电化学性能    
Abstract

The spherical composite of MgFe2O4/C (MFO/C) with hierarchical structure was prepared via spray drying technology with citric acid and Super P (SP) as carbon source. The morphology, structure and electrochemical performance of the MFO/C were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray powder diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and electrochemical measurements. Results show that the first discharge capacity of the material is 1162.7 mA∙g-1 and the reversible specific capacity stabilizes at about 734.5 mA∙g-1 after 200 cycles when the current density is 0.5 C (500 mA∙g-1). Even at a higher current density of 1 C (1000 mA∙g-1), the reversible specific capacity stabilizes at about 580.4 mA∙g-1 after 200 cycles. The excellent cycling stability and rate performance can be attributed to the emerging of a superior conductive network, which composed of SP and the intergranular carbon formed due to the decomposition of citric acid, as a result, the conductivity of the spherical composite of MgFe2O4/C could be effectively enhanced, while the aggregation and volumetric expansion of the active particles could also be alleviated in the continuous charge and discharge process.

Key wordsmetal matrix composites    anode material    spray drying    MgFe2O4    lithium-ion battery    electrochemical performance
收稿日期: 2018-01-10     
ZTFLH:  O646  
基金资助:国家自然科学基金(21471049)
作者简介:

作者简介 高荣贞,女,1995年生,硕士生

图1  MFO/C复合材料和MFO的XRD图谱
图2  MFO/C-1和MFO/C-2的TGA曲线
图3  MFO/C-1和MFO/C-2的拉曼谱图
图4  MFO/C-1的EDS谱图
图5  MFO/C-1的XPS谱图
图6  MFO/C-1(a, b, d, e)和MFO/C-2(c, f)的FESEM和TEM照片
图7  MFO/C-1与MFO/C-2材料的氮气吸脱附曲线和孔径分布图(内层图)
图8  MFO/C-1的充放电曲线和CV
图9  MFO/C和MFO的循环、倍率性能和交流阻抗图
[1] Dunn B, Kamath H, Tarascon J M.Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928
[2] Armand M, Tarascon J M.Building better batteries[J]. Nature, 2008, 451: 652-7
[3] Ellis B L, Knauth P, Djenizian T.Three-dimensional self-supported metal oxides for advanced energy storage[J]. Adv. Mater., 2014, 26: 3368
[4] Yuan C, Wu H B, Xie Y, et al.Mixed transition-metal oxides: design, synthesis, and energy-related applications[J]. Angew.Chem., 2014, 53: 1488
[5] Yin Y H, Liu W F, Huo N N, et al.High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing[J]. Chem. Eng. J., 2017, 307: 999
[6] Huo N N, Yin Y H, Liu W F, et al.Facile synthesis of MgFe2O4/C composites as anode materials for lithium-ion batteries with excellent cycling and rate performance[J]. New J. Chem., 2016, 40: 7068
[7] Yin Y H, Huo N N, Liu W F, et al.Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries[J]. Scripta Mater., 2016, 110: 92
[8] Hu P, Yu L, Zuo A, et al.Fabrication of Monodisperse Magnetite Hollow Spheres[J]. J. Phys. Chem. C, 2009, 113: 900
[9] Guo X, Lu X, Fang X, et al.Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries[J]. Electrochem. Commun., 2010, 12: 847
[10] Gong C, Bai Y J, Qi Y X, et al.Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance[J]. Electrochim. Acta, 2013, 90: 119
[11] Yao L, Hou X, Hu S, et al.Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries[J]. J. Power Sources, 2014, 258: 305
[12] Kim J, Kim Y, Noh Y, et al.Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties[J]. Rsc Adv., 2014, 4: 27714
[13] Yin Y H, Liu W F, Huo N N, et al.Synthesis of Vesicle-Like MgFe2O4/Graphene 3D Network Anode Material with Enhanced Lithium Storage Performance[J]. Acs Sustain. Chem. Eng., 2017, 5: 563
[14] Sivakumar N, Narayanasamy A, Greneche J M, et al.Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite[J]. J. Alloys Compd., 2010, 504: 395
[15] Jia C J, Liu Y, Schwickardi M, et al.Small gold particles supported on MgFe2O4 nanocrystals as novel catalyst for CO oxidation[J]. Appl. Catal. A-Gen., 2010, 386: 94
[16] Liu Y L, Liu Z M, Yang Y, et al.Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials[J]. Sens. Actuators, B-Chem., 2005, 107: 600
[17] Rai A K, Thi T V, Gim J, et al.Combustion synthesis of MgFe2O4/graphene nanocomposite as a high-performance negative electrode for lithium ion batteries[J]. Mater. Charact., 2014, 95: 259
[18] Pan Y, Zhang Y, Wei X, et al.MgFe2O4 nanoparticles as anode materials for lithium-ion batteries[J]. Electrochim. Acta, 2013, 109: 89
[19] Liu H W, Liu H F.Synthesis of Nanosize Quasispherical MgFe2O4 and Study of Electrochemical Properties as Anode of Lithium Ion Batteries[J]. J. Electron. Mater., 2014, 43: 2553
[20] Qiao H, Luo L, Chen K, et al.Electrospun synthesis and lithium storage properties of magnesium ferrite nanofibers[J]. Electrochim. Acta, 2015, 160: 43
[21] Zhang Z, Ren W, Wang Y, et al.Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries[J]. Nanoscale, 2014, 6: 6805
[22] Hou M, Guo S, Liu J, et al.Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process[J]. J. Power Sources, 2015, 287: 370
[23] Park G D, Cho J S, Kang Y C.Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect[J]. Nanoscale, 2015, 7: 16781
[24] Sun X R, Zhang H W, Zhou L, et al.Polypyrrole-Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithium-Ion Batteries[J]. Small, 2016, 12: 3732
[25] Fan J L, Chen Y B, Han Y, et al.Preparation and sintering behavior of ultra-fine Mo-30Cu composite powders[J]. Chin. J. Mater. Res., 2009, 23(4): 363(范景莲, 陈玉柏, 韩勇等. 超细Mo-30Cu复合粉末的烧结行为[J]. 材料研究学报, 2009, 23(4): 363)
[26] Wang L, Jiang F H, Gong H B, et al.Synthesis and properties of well-dispersive and spherical YAG:Ce3+ phosphors[J]. Chin. J. Mater. Res., 2012, 26(4): 414(王磊, 姜奉华, 巩海波等. 易分散球形YAG:Ce3+荧光粉的制备和性能[J]. 材料研究学报, 2012, 26(4): 414)
[27] Xia H, Wan Y, Yuan G, et al.Fe3O4/carbon core-shell nanotubes as promising anode materials for lithium-ion batteries[J]. J. Power Sources, 2013, 241: 486
[28] Wang C, Yin L, Dong X, et al.Uniform Carbon Layer Coated Mn3O4 Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. ACS Appl. Mat. Interfaces, 2012, 4: 1636
[29] Gao S, Geng K.Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction[J]. Nano Energy, 2014, 6: 44
[30] Zhou G, Wang D-W, Li F, et al.Graphene-Wrapped Fe3O4Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. Chem. Mater., 2010, 22: 5306
[31] Zhu Z, Wang S, Du J, et al.Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries[J]. Nano Lett., 2014, 14: 153-7
[32] Su Y, Zhu Y, Jiang H, et al.Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2014, 6: 15080-9
[33] Cao L, Wang R, Xu Z, et al.Constructing Mn-O-C bonds in Mn3O4/Super P composite for superior performance in Li-ion battery[J]. J. Electroanal. Chem., 2017, 798: 1
[34] Kang Q, Cao L, Li J, et al.Super P enhanced CoO anode for lithium-ion battery with superior electrochemical performance[J]. Ceram. Int., 2016, 42: 15920
[35] Li J, Shi X, Fang J, et al.Facile Synthesis of WS2 Nanosheets-Carbon Composites Anodes for Sodium and Lithium Ion Batteries[J]. Chemnanomat, 2016, 2: 997
[36] Yuan S M, Li J X, Yang L T, et al.Preparation and Lithium Storage Performances of Mesoporous Fe3O4@C Microcapsules[J]. ACS Appl. Mat. Interfaces, 2011, 3: 705
[37] Lei C, Han F, Sun Q, et al.Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries[J]. Chemistry, 2014, 20: 139
[1] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[2] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] 李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.
[4] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[5] 赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
[6] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] 肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
[8] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[9] 刘芝君, 李之锋, 王春香, 谢光明, 黄庆研, 钟盛文. 四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能[J]. 材料研究学报, 2020, 34(8): 584-590.
[10] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[11] 李玲芳, 曾斌, 原志朋, 范长岭. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究[J]. 材料研究学报, 2020, 34(8): 591-598.
[12] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[13] 谭稀, 宋玉哲, 史鑫, 强进, 魏廷轩, 卢启海. 自旋阀多层膜磁化翻转场的调控和磁电阻特性[J]. 材料研究学报, 2020, 34(4): 272-276.
[14] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[15] 周鹏飞,张鹏,杜云慧,王玉洁,左成. 喷雾干燥法制备富锂正极材料及其电化学性能[J]. 材料研究学报, 2019, 33(7): 481-487.