Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 751-758    DOI: 10.11901/1005.3093.2017.708
  研究论文 本期目录 | 过刊浏览 |
组织不均匀性对6005A铝合金晶间腐蚀性能的影响
申澎洋, 唐建国(), 叶凌英, 段程雄, 邓运来
中南大学材料科学与工程学院 长沙 410083
Effect of Microstructure Heterogeneity on Intergranular Corrosion Susceptibility of Al-alloy 6005A
Pengyang SHEN, Jianguo TANG(), Lingying YE, Chengxiong DUAN, Yunlai DENG
School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

申澎洋, 唐建国, 叶凌英, 段程雄, 邓运来. 组织不均匀性对6005A铝合金晶间腐蚀性能的影响[J]. 材料研究学报, 2018, 32(10): 751-758.
Pengyang SHEN, Jianguo TANG, Lingying YE, Chengxiong DUAN, Yunlai DENG. Effect of Microstructure Heterogeneity on Intergranular Corrosion Susceptibility of Al-alloy 6005A[J]. Chinese Journal of Materials Research, 2018, 32(10): 751-758.

全文: PDF(7713 KB)   HTML
摘要: 

使用光学显微镜(OM),扫描电子显微镜(SEM)和透射电子显微镜(TEM)等手段检测轨道交通用6005A-T5铝合金的微观组织并进行晶间腐蚀试验,研究了6005A铝合金挤压型材的组织不均匀性及其对晶间腐蚀(IGC)抗性的影响。结果表明:6005A-T5铝合金的挤压型材表现出明显的表层粗晶特征,表层的晶粒尺寸大部分大于100 μm,第二相粗大且分布稀疏,晶界基本上是大角度的(95.6%);心部晶粒基本上小于50 μm(99.8%),第二相细小且沿挤压方向呈链状分布,有较多的小角度晶界。保留粗晶层的试样其抗晶间腐蚀性能较好,最大腐蚀深度为37.08 μm;去除粗晶层试样其抗晶间腐蚀性能较差,最大腐蚀深度为459.28 μm。更少的晶界和更稀疏的晶界析出物,是6005A铝合金挤压型材表层粗晶的抗晶间腐蚀性能优于内层细晶的主要原因。

关键词 金属材料6005A铝合金组织不均匀性粗晶层晶间腐蚀晶界析出物    
Abstract

The effect of microstructure heterogeneity on the intergranular corrosion susceptibility of the extruded Al-alloy 6005A was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and intergranular corrosion (IGC) test. Results show that the microstructure of the surface layer is quite different from that of the central portion of the Al-alloy profile. The surface layer is full of coarse grain bigger than 100 μm, coarse and scattered second phase particles and large angle (≥10°) grain boundaries, while the size of grains and second phase particles is much finer in the central portion, and many low angle grain boundaries can be observed this portion. The PCG (peripheral coarse grain) surface layer-reserved sample presents better IGC resistance than that of the PCG surface layer-removed sample, correspondingly the maximum depth of IGC was 37.08 μm for the former, while 459.28 μm for the later. The major cause why corrosion resistance of the surface layer LS superior to the central portion of the alloy may be ascribed to the less grain boundary and lower density of grain boundary precipitates of the surface layer.

Key wordsmetallic materials    6005A aluminum alloy    microstructure heterogeneity    peripheral coarse grain    intergranular corrosion    grain boundary precipitate
收稿日期: 2017-11-30     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51474240),中山市重大科技专项(2016A1001)
作者简介:

作者简介 申澎洋,男,1993年生,硕士生

图1  实验材料规格的示意图
Electrolyte U / V I / mA T / ℃ t / s
Anodizing H2O+HBF4(200:5) 25±2 <0.1 25±2 40~120
Electropolishing HClO4+C2H5OH(1:9) 20±2 <0.1 -15±5 5~15
表 1  阳极覆膜和电解抛光参数
图2  6005A挤压型材#2位置的金相显微组织
图3  6005A挤压型材横截面不同部位粗晶层的深度
图4  6005A挤压型材#2位置第二相形貌
Grain area/μm2 0~3 3~6 6~9 9~12 12~15 15~18 18~21
Relative frequency/% Surface layer 72 10 9 2 3 2 2
Central layer 95 4 1 0 0 0 0
表 2  6005A型材不同区域第二相尺寸统计
图5  6005A挤压型材#2位置EBSD图
图6  6005A挤压型材粗晶分区和细晶分区晶粒的尺寸分布
图7  6005A挤压型材粗晶分区和细晶分区取向差的分布
图8  6005A铝合金挤压型材TD-ED面腐蚀形貌
图9  6005A铝合金挤压型材TD-ND面腐蚀形貌
图10  6005A铝合金挤压型材不同部位的TEM照片
图11  晶界第二相的EDX结果
[1] Hirsch J, Al-Samman T.Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications[J]. Acta Materialia, 2013, 61(3): 818
[2] Sheng X F, Yang W C, XIA C D, et al.Effects of T6 and T6I6 ageing treatments on microstructure and properties of 6005A aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(05): 1276(盛晓菲, 杨文超, 夏承东等. T6时效和T6I6时效对6005A铝合金微观组织和性能的影响[J]. 中国有色金属学报, 2012, 22(05):1276)
[3] Dai L F, Gong Q J, Cao X P, et al.Processing technology of 6005A extruded profiles of complex large sections[J]. Light Alloy Fabrication Technology, 2015, 43(12): 32(戴丽芳, 巩全军, 曹春鹏等. 复杂大断面6005A铝合金型材挤压生产工艺分析[J]. 轻合金加工技术, 2015, 43(12): 32)
[4] Deng Y L, Wang Y F, Lin H Q, et al.Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy[J]. Chinese Journal of Materials Research, 2016, 30(02): 87(邓运来, 王亚风, 林化强等. 挤压温度对Al-Zn-Mg合金力学性能的影响[J]. 材料研究学报, 2016, 30(02): 87)
[5] Zhang X L, Xu X J, Ling Z Y, et al.Microstructure and Mechanical Properties of an Extruded Al-Alloy Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr[J]. Chinese Journal of Materials Research, 2015, 29(10): 729(张香丽, 许晓静, 凌智勇等. Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr铝合金挤压材的性能[J]. 材料研究学报, 2015, 29(10): 729)
[6] Kaneko S, Murakami K, Sakai T.Effect of the extrusion conditions on microstructure evolution of the extruded Al-Mg-Si-Cu alloy rods[J]. Materials Science and Engineering: A, 2009, 500(1): 8
[7] Birol Y.Impact of partial recrystallization on the performance of 6005A tube extrusions[J]. Engineering Failure Analysis, 2010, 17(5): 1110
[8] Eivani A R, Zhou J, Duszczyk J.Mechanism of the formation of peripheral coarse grain structure in hot extrusion of Al-4.5Zn-1Mg[J]. Philosophical Magazine, 2016, 96(12): 1188
[9] Geertruyden W H V, Misiolek W Z, Wang P T. Surface grain structure development during indirect extrusion of 6xxx aluminum alloys[J]. Journal of Materials Science, 2005, 40(14): 3861
[10] Geertruyden W H V, Claves S R, Misiolek W Z. Electron backscatter diffraction analysis of microstructural evolution in hot-deformed 6xxx series aluminum alloys[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 693
[11] Kikuchi S, Yamazaki H, Otsuka T.Peripheral-recrystallized structures formed in Al-Zn-Mg-Cu-Zr alloy materials during extrusion and their quenching sensitivity[J]. Journal of Materials Processing Technology, 1993, 38(4): 689
[12] Wang E H.The research in the peripheral coarse grain structure of the Д1 aluminum alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 1958, (02): 29(王恩鸿. 对压挤铝合金Д1产品形成粗晶环的研究[J]. 北京航空学院学报, 1958, (02): 29)
[13] Liu Z W, Li L X, Zhang M, et al.Research progress of interface friction in hot extrusion of aluminium alloys[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(07): 1311(刘志文, 李落星, 张明等. 铝合金热挤压过程中界面摩擦的研究进展[J]. 中国有色金属学报,2017, 27(07): 1311)
[14] Barnett M R, Kelly G L, Hodgson P D.Predicting the critical strain for dynamic recrystallization using the kinetics of static recrystallization[J]. Scripta Materialia, 2000, 43(4): 365
[15] Solhjoo S.Determination of critical strain for initiation of dynamic recrystallization[J]. Materials and Design, 2010, 31(3): 1360
[16] Zhang X M, Ke B, Tang J G, et al.Effects of Mn Content on Microstructure and Mechanical Properties of 6061 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2013, 27(04): 337(张新明, 柯彬, 唐建国等. Mn含量对6061铝合金组织与力学性能的影响[J]. 材料研究学报,2013, 27(04): 337)
[17] Wang Z X, Li H, Gu J H, et al.Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12): 3348(王芝秀, 李海, 顾建华等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响[J]. 中国有色金属学报, 2012, 22(12): 3348)
[18] Svenningsen G, Larsen M H, Nordlien J H, et al.Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy[J]. Corrosion Science, 2006, 48(1): 258
[19] Zeng F L, Wei Z L, Li J F, et al.Corrosion mechanism associated with Mg2Si and Si particles in Al-Mg-Si alloys[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2559
[20] Wang N, Liu Q, Zhang Y X, et al . Corrosion Property of Al-Alloy 6061-T6 Processed by Multi-pass Friction Stir Processing[J]. Chinese Journal of Materials Research, 2015, 29(08): 589(王淼, 刘强, 张亚雄等. 6061-T6铝合金多道搭接FSP腐蚀性能[J]. 材料研究学报, 2015, 29(08): 589)
[21] Sheng X F, Yang W C, Wang M P, et al.Effect of artificial ageing on intergranular corrosion of 6005A Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(08): 2174(盛晓菲, 杨文超, 汪明朴等. 人工时效对6005A铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报, 2012, 22(08): 2174)
[22] Svenningsen G, Lein J E, Bj?rgum A, et al.Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys[J]. Corrosion Science, 2006, 48(1): 226
[23] Li H Z, Yao S C, Liang X P, et al.Grain boundary pre-precipitation and its contribution to enhancement of corrosion resistance of Al-Zn-Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2523
[24] Li K, Song M, Du Y, et al.Effect of Minor Cu Addition on the Precipitation Sequence of an As-Cast Al-Mg-Si 6005 Alloy[J]. Archives of Metallurgy & Materials, 2012, 57(2): 457
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.