Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 669-674    DOI: 10.11901/1005.3093.2017.688
  本期目录 | 过刊浏览 |
Cu对Pd/C电催化乙醇氧化性能的影响
孙丽美1,2(), 苏日古嘎1,2, 石乐乐1,2, 张益佳1,2
1 内蒙古民族大学化学化工学院 通辽 028000
2 内蒙古民族大学 内蒙古自治区纳米碳材料重点实验室 通辽 028000
Effect of Cu on Electrocatalytic Oxidation of Ethanol by Catalyst Pdx-Cu/C
Limei SUN1,2(), Suriguga LI1,2, Lele SHI1,2, Yijia ZHANG1,2
1 College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000, China
2 Inner Mongolia Autonomous Region Key Laboratory of Nanocarbon Materials, Inner Mongolia University for the Nationalities, Tongliao 028000, China
引用本文:

孙丽美, 苏日古嘎, 石乐乐, 张益佳. Cu对Pd/C电催化乙醇氧化性能的影响[J]. 材料研究学报, 2018, 32(9): 669-674.
Limei SUN, Suriguga LI, Lele SHI, Yijia ZHANG. Effect of Cu on Electrocatalytic Oxidation of Ethanol by Catalyst Pdx-Cu/C[J]. Chinese Journal of Materials Research, 2018, 32(9): 669-674.

全文: PDF(2471 KB)   HTML
摘要: 

以活性碳(Vulcan XC-72)为载体,用改良的化学还原法制备不同Pd:Cu比例的Pdx-Cu/C催化剂,使用X-射线衍射(XRD)、透射电镜(TEM)、X-射线光电子能谱(XPS)和电化学方法对其进行了表征,研究了Cu对Pd/C催化剂催化性能的影响。结果表明:随着Pd与Cu原子比的提高Pdx-Cu/C催化剂的催化活性先提高后降低,当Pd:Cu=8:1时Pd8-Cu/C催化剂粒子均匀分散在碳载体表面,其直径约为2.8 nm;在催化剂中掺入的少量Cu元素部分进入Pd晶格形成了合金。这种催化剂在混合水溶液中表现出最佳的催化活性和稳定性,对C2H5OH氧化的催化峰电流密度达到114 mA/cm2,是Pd/C的2.5倍,是JM-Pd/C的3.6倍。

关键词 金属材料钯铜合金纳米粒子乙醇氧化燃料电池    
Abstract

Catalysts of Pdx-Cu/C with different ratios of Pd to Cu on carbon (Vulcan XC-72) were prepared by an improved chemical reduction method, which then were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical methods in terms of the morphology and catalytic performance of the catalysts. Especially, the effect of Cu on the catalytic performance of Pd/C catalysts was investigated. Results show that the catalytic activity of the catalysts of Pdx-Cu/C increased first and then decreased with the increasing ratios of Pd to Cu. When Pd:Cu=8:1, catalyst particles of Pd8-Cu/C were uniformly dispersed on the surface of the carbon carrier, and the diameter of the catalyst is about 2.8 nm. A small amount of Cu atoms entered the Pd lattice and formed a PdCu alloy. In 1 mol/L KOH solution the catalyst Pd8-Cu/C showed the best catalytic activity and stability that the peak current density of C2H5OH oxidation on Pd8-Cu/C reached 114 mA/cm2, which was 2.5 times of that on Pd/C and 3.6 times of that on JM-Pd/C respectively.

Key wordsmetallic materials    palladium copper alloy    nanoparticles    ethanol oxidation    fuel cell
收稿日期: 2017-11-21     
ZTFLH:  O64  
基金资助:国家自然科学基金(21003070, 2146303)
作者简介:

作者简介 孙丽美,女,1980年生,教授

XRD particle size/nm TEM particle size/nm EASA/cm2 If/Ib
JM-Pd/C 21.14 1.87
Pd/C 4.1 4 21.86 2.05
Pd8-Cu/C 2.8 3 27.65 1.33
表1  根据XRD、TEM得到的Pd/C、Pd8-Cu/C、JM-Pd/C催化剂的粒径和If/Ib比值
图1  Pd/C和Pdx-Cu/C催化剂的XRD谱以及Pd/C和Pd8-Cu/C 催化剂的Pd(111)峰放大图
图2  Pd/C、Pd8-Cu/C催化剂TEM照片和高倍TEM照片
图3  Pd/C、Pd8-Cu/C催化剂中Pd 3d和Cu 2p的XPS谱图
图4  Pdx-Cu/C催化剂催化乙醇氧化的峰电流密度循环伏安图、Pd/C、Pd8-Cu/C、JM-Pd/C催化剂的循环伏安曲线和部分放大图、三种催化剂的乙醇氧化线性伏安曲线、计时电流曲线以及200圈循环伏安性能比较
[1] Zhu L D, Zhao T S, Xu J B, et al.Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media[J]. J. Power Sources, 2009, 187: 80
[2] Lamy C, Rousseau S, Belgsir E M, et al.Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts[J]. Electrochim. Acta, 2004, 49: 3901
[3] Bianchini C, Bambagioni V, Filippi J, et al.Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells[J]. Electrochem. Commun., 2009, 11: 1077
[4] Su H N, Jao T C, Barron O, et al.Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J]. J. Power Sources, 2014, 267: 155
[5] Ye J, Lu P, Xu C, et al.Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium[J]. Electrochem. Commun., 2007, 9: 2760
[6] Liang Z X, Zhao T S, Xu J B, et al.Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta, 2009, 54: 2203
[7] Wang A L, Xu H, Feng J X, et al.Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation[J]. J. Am. Chem. Soc., 2013, 135: 10703
[8] Wang A L, He X J, Lu X F, et al.Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation[J]. Angew. Chem., Int. Ed., 2015, 54: 3669
[9] Chen Y M, Chen M M, Shi J C, et al.Pd nanoparticles on Co nanofilms as composite electrocatalysts for ethanol oxidation in alkaline solution[J]. Int. J. Hydrogen Energy, 2016, 41: 17112
[10] Kang W D, Wei Y C, Liu C W, et al.Enhancement of electrochemical properties on Pd-Cu/C electrocatalysts toward ethanol oxidation by atmosphere induced surface and structural alteration[J]. Electrochem. Commun., 2011, 13: 162
[11] Dong Q, Zhao Y, Han X, et al.Pd/Cu bimetallic nanoparticles supported on graphene nanosheets: Facile synthesis and application as novel electrocatalyst for ethanol oxidation in alkaline media[J]. Int. J. Hydrogen Energy, 2014, 39: 14669
[12] Jou L S, Chang J K, Twhang T J, et al.Electrodeposition of palladium-copper films from 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid on indium tin oxide electrodes[J]. J. Electrochem. Soc., 2009, 156: D193
[13] Jo Y G, Kim S M, Kim J W, et al.Composition-tuned porous Pd-Ag bimetallic dendrites for the enhancement of ethanol oxidation reactions[J]. J. Alloys Compd., 2016, 688: 447
[14] Nguyen S T, Law H M, Nguyen H T, et al.Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J]. Appl. Catal., 2009, 91B: 507
[15] Krishna R, Fernandes D M, Ventura J, et al.Facile synthesis of reduced graphene oxide supported Pd@NixB/RGO nanocomposite: Novel electrocatalyst for ethanol oxidation in alkaline media[J]. Int. J. Hydrogen Energy, 2016, 41: 11811
[16] Maiyalagan T, Scott K.Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium[J]. J. Power Sources, 2010, 195: 5246
[17] Shen S Y, Zhao T S, Xu J B, et al.Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. J. Power Sources, 2010, 195: 1001
[18] Fouda-Onana F, Bah S, Savadogo O.Palladium-copper alloys as catalysts for the oxygen reduction reaction in an acidic media I: Correlation between the ORR kinetic parameters and intrinsic physical properties of the alloys[J]. J. Electroanal. Chem., 2009, 636: 1
[19] Fouda-Onana F, Savadogo O.Study of O2 and OH adsorption energies on Pd-Cu alloys surface with a quantum chemistry approach[J]. Electrochim. Acta, 2009, 54: 1769
[20] Mukherjee P, Roy P S, Mandal K, et al.Improved catalysis of room temperature synthesized Pd-Cu alloy nanoparticles for anodic oxidation of ethanol in alkaline media[J]. Electrochim. Acta, 2015, 154: 447
[21] Wei Y C, Liu C W, Wang K W.Surface species alteration and oxygen reduction reaction enhancement of Pd-Co/C electrocatalysts induced by ceria modification[J]. Chem Phys Chem, 2010, 11: 3078
[22] Lu L, Shen L P, Shi Y, et al.New insights into enhanced electrocatalytic performance of carbon supported Pd-Cu catalyst for formic acid oxidation[J]. Electrochim. Acta, 2012, 85: 187
[23] Tominaka S, Momma T, Osaka T.Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization[J]. Electrochim. Acta, 2008, 53: 4679
[24] Chierchie T, Mayer C, Lorenz W J.Structural changes of surface oxide layers on palladium[J]. J. Electroanal. Chem. Interfacial Electrochem., 1982, 135: 211
[25] Wang H, Yang W H, Zhang Q H, et al. Shape-controlled synthesis of palladium-copper nanoalloys with improved catalytic activity for ethanol electrooxidation [J]. Int. J. Electrochem., 2016, 2016: Article ID 4261012
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.