Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 567-574    DOI: 10.11901/1005.3093.2017.678
  研究论文 本期目录 | 过刊浏览 |
有耗频率选择表面蜂窝吸波复合材料的电磁性能
陈育秋1,2, 祖亚培1, 宫骏1, 孙超1(), 王晨3
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
3 澳汰尔工程软件(上海)有限公司 上海 200436
Electromagnetic Property of Honeycomb Absorbing Composites with Lossy Frequency Selective Surface
Yuqiu CHEN1,2, Yapei ZU1, Jun GONG1, Chao SUN1(), Chen WANG3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Altair Engineering Software (Shanghai) Co. Ltd., Shanghai 200436, China
引用本文:

陈育秋, 祖亚培, 宫骏, 孙超, 王晨. 有耗频率选择表面蜂窝吸波复合材料的电磁性能[J]. 材料研究学报, 2018, 32(8): 567-574.
Yuqiu CHEN, Yapei ZU, Jun GONG, Chao SUN, Chen WANG. Electromagnetic Property of Honeycomb Absorbing Composites with Lossy Frequency Selective Surface[J]. Chinese Journal of Materials Research, 2018, 32(8): 567-574.

全文: PDF(1667 KB)   HTML
摘要: 

采用芳纶纸蜂窝与有耗频率选择表面复合设计兼具重量轻、强度高及吸波带宽宽的蜂窝吸波复合材料,研究了蜂窝吸波复合材料中蜂窝的厚度和有耗频率选择表面对结构电磁性能的影响。用等效电路法分析了传统孔径型方环有耗频率选择表面的电磁波吸收原理及该结构在宽频电磁吸收方面的缺陷。使用开槽的方法增大该结构等效电容的作用,在保持高频吸收性能基本不变的情况下增大了低频吸收峰,改进了结构的低频吸收性能,使吸波带宽展宽1倍以上。通过matlab计算出等效电容和等效电感,结果表明:方环形有耗频率选择表面的环宽度只改变等效电感的大小,等效电容保持不变;等效电感的大小主要影响高频吸收峰位,等效电容的大小主要影响低频吸收峰位。蜂窝厚度主要影响低频吸收峰值和高频吸收峰位。基于以上特性设计出具有宽频电磁波吸收性能、厚度为6 mm的蜂窝夹芯结构吸波材料:在6 mm蜂窝介质表面覆盖开槽方环形有耗频率选择表面,最下面为金属反射层,其-10 dB的电磁波吸收带宽达到14 GHz。测试结果与设计结果基本一致。

关键词 金属材料蜂窝吸波复合材料电磁性能有耗FSS等效电感等效电容    
Abstract

The honeycomb absorbing composites with light weight, high strength and broadband absorbing property had been designed by combination of aramid honeycomb and lossy frequency selective surface composite. The effect of the thickness of honeycomb and the configuration of lossy frequency selective surface on electromagnetic performance was investigated, while the electromagnetic absorbing principle of the lossy frequency selective surface with traditional aperture was analyzed by the equivalent circuit method, and of which the deficiency in broadband absorbing was also proposed. In order to resolve the structure with none equivalent capacitance, slots were made on the lossy frequency selective surface with traditional aperture. Consequently, there have been another absorption peak in low frequency, and the high frequency absorption performance kept unchanged. Correspondingly the low frequency absorption performance was greatly improved, thus the whole absorbing performance of the very configuration was greatly improved, and the absorbing bandwidth had been broadened more than one time. Through calculating the equivalent capacitance and inductance by matlab, it follows that as the width of square ring changed,the equivalent inductance varied accordingly,but the equivalent capacitance remain unchanged; The high frequency absorption peaks were mainly affected by the equivalent inductance, and the low frequency absorption peaks were mainly affected by the equivalent capacitance. The thickness of honeycomb mainly affected the low frequency absorption peak and the position of high frequency absorption peak. According to the above characteristics, a thickness of 6mm broadband honeycomb absorbing composites had been designed with the slotted lossy frequency selective surface in front of the honeycomb medium, which presented an absorbing bandwidth 14 GHz of -10 dB. The actual test result basically accorded with the design expectation.

Key wordsmetallic materials    microwave absorbing honeycomb composites    electromagnetic property    loss FSS    equivalent inductance    equivalent capacitance
收稿日期: 2017-11-16     
ZTFLH:  TB333  
作者简介:

作者简介 陈育秋,女,1986年生,博士生

图1  蜂窝结构吸波材料的仿真模型
图2  孔径型方环有耗FSS示意图和等效电路模型
图3  传统孔径型FSS的ωL值与频率的关系
图4  孔径型方环有耗FSS开槽后示意图和等效电路模型
图5  孔径型FSS开槽后的1/ωC值与频率的关系
图6  两种不同周期FSS吸波结构开槽前后电磁性能的仿真计算对比曲线
图7  两种不同周期开槽FSS的环宽度对吸波结构电磁性能的影响
图8  环宽度对开槽方环FSS的ωL、1/ωC的影响
图9  蜂窝厚度对结构电磁性能的影响
图10  方环FSS蜂窝吸波结构实物图及仿真测试结果对比曲线
[1] He Y F, Gong R Z, Wang X, et al.Study on equivalent electromagnetic parameters and absorbing properties of honeycomb-structured absorbing materials[J]. Acta Phys. Sin., 2008, 57: 5261(何燕飞, 龚荣洲, 王鲜等. 蜂窝结构吸波材料等效电磁参数和吸波特性研究[J]. 物理学报, 2008, 57: 5261)
[2] Gong Y X, Ou Q D, Zhao H J, et al.Genetic algorithm optimization and microwave absorption performance of multilayer honeycomb composites [A]. 17th National Conference on Composite Materials [C]. Beijing: China astronautic Publishing House, 2012(宫元勋, 欧秋仁, 赵宏杰等. 吸波蜂窝复合材料的结构优化和吸波性能研究 [A]. 第17届全国复合材料学术会议论文集 [C].北京: 中国宇航出版社, 2012)
[3] Chang X.Research on equivalent electromagnetic parameters and reflection parameters of honeycomb absorbing materials [D]. Chengdu: University of Electronic Science and Technology of China, 2014(常霞. 蜂窝吸波材料等效电磁参数及反射系数的研究 [D]. 成都: 电子科技大学, 2014)
[4] Munk B A.Frequency Selective Surfaces: Theory and Design[M]. New York: Wiley, 2000
[5] Li J Z, Tian H, Liu H T, et al.Design and verification of a radar-infrared stealth-compatible material based on metamaterial[J]. J. Funct. Mater., 2017, 48: 5137(李君哲, 田浩, 刘海韬等. 一种基于超材料的雷达红外兼容隐身材料设计与验证[J]. 功能材料, 2017, 48: 5137)
[6] Liu T, Kim S S.Design of wide-bandwidth electromagnetic wave absorbers using the inductance and capacitance of a square loop-frequency selective surface calculated from an equivalent circuit model[J]. Opt. Commun., 2016, 359: 372
[7] Xu H B, Bie S W, Xu Y S, et al.Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces[J]. Composites, 2016, 80A: 111
[8] Yang Z N, Luo F, Zhou W C, et al.Design of a thin and broadband microwave absorber using double layer frequency selective surface[J]. J. Alloys Compd., 2017, 699: 534
[9] Yuan W, Chen Q, Xu Y S, et al.Broadband microwave absorption properties of ultrathin composites containing edge-split square-loop FSS embedded in magnetic sheets[J]. IEEE Antennas Wirel. Propag. Lett., 2017, 16: 278
[10] Costa F, Monorchio A, Manara G.A circuit-based model for the interpretation of perfect metamaterial absorbers[J]. IEEE Trans. Antennas Propag., 2012, 61: 1201
[11] Liu Y H, Zhou L J, Ouyang J.Transmission performance analysis of circular polarisation frequency selective surface and fast accurate optimisation based on equivalent circuit[J]. IET Microw. Antennas Propag., 2017, 11: 1493
[12] Li W X, Wang C M, Zhang Y, et al. A miniaturized frequency selective surface based on square loop aperture element [J]. Int. J. Antennas Propag., 2014,2014: Article ID 701279
[13] Kaipa C S R, Yakovlev A B, Medina F, et al. Transmission through stacked 2D periodic distributions of square conducting patches[J]. J. Appl. Phys., 2012, 112: 033101
[14] D'Amore M, De Santis V, Feliziani M. Equivalent circuit modeling of frequency-selective surfaces based on nanostructured transparent thin films[J]. IEEE Trans. Magn., 2012, 48: 703
[15] Liu T, Kim S S.Calculation of inductance, capacitance, and microwave absorbance of modified square loop frequency selective surface[J]. Korean J. Met. Mater., 2017, 55: 412
[16] Joozdani M Z, Amirhosseini M K.Equivalent circuit model for the frequency-selective surface embedded in a layer with constant conductivity[J]. IEEE Trans. Antennas Propag., 2017, 65: 705
[17] Liu S S, Gao Z P.Equivalent circuit model of multilayer square frequency selective surface absorbing material[J]. Mater. Rev., 2015, 29(22): 130(刘沙沙, 高正平. 多层方环形频率选择表面吸波材料的等效电路模型[J]. 材料导报, 2015, 29(22): 130)
[18] Yu Z, Lu G Z.Equivalent circuit method for analyzing high impedance surface based planar microwave absorber[J]. J. Microw., 2014, (S2): 112(余泽, 逯贵祯. 基于高阻抗表面吸波结构的等效电路分析方法[J]. 微波学报, 2014, (S2): 112)
[19] Costa F, Genovesi S, Monorchio A.On the bandwidth of high-impedance frequency selective surfaces[J]. IEEE Antennas Wireless Propag. Lett., 2009, 8: 1341
[20] Yan Z W, Su D L, Yuan X M.FEKO 5.4 Electromagnetic Field Analysis Techniques and Examples [M]. Beijing: China Water Power Press, 2009(阎照文, 苏东林, 袁晓梅. FEKO 5.4电磁场分析技术与实例详解 [M]. 北京: 中国水利水电出版社, 2009)
[21] Zhang H B.Design of broadband periodic absorbing structure based on electromagnetic resonances [D]. Chengdu: University of Electronic Science and Technology of China,2013(张辉彬. 基于电磁谐振的宽频周期吸波结构设计 [D]. 成都: 电子科技大学, 2013)
[22] Marcuvitz N.Waveguide Handbook[M]. Milton Keynes: Lightening Source Ltd., 2012
[23] Langley R J, Parker E A.Equivalent circuit model for arrays of square loops[J]. Electron. Lett., 1982, 18: 294
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.