Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 575-583    DOI: 10.11901/1005.3093.2017.675
  研究论文 本期目录 | 过刊浏览 |
Mo/Nb/Ti/Zr微合金化对Fe-Cr-Al不锈钢第二相析出和显微硬度的影响
王镇华1, 温冬辉1, 吕阳1, 郝家苗1, 王清1(), 许余2
1 大连理工大学 三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024;
2 中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
Effect of Mo/Nb/Ti/Zr Minor-alloying on the Second-phase Precipitation and Microhardness in Fe-Cl-Al Stainless Steels
Zhenhua WANG1, Donghui WEN1, Yang LV1, Jiamiao HAO1, Qing WANG1(), Yu XU2
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

王镇华, 温冬辉, 吕阳, 郝家苗, 王清, 许余. Mo/Nb/Ti/Zr微合金化对Fe-Cr-Al不锈钢第二相析出和显微硬度的影响[J]. 材料研究学报, 2018, 32(8): 575-583.
Zhenhua WANG, Donghui WEN, Yang LV, Jiamiao HAO, Qing WANG, Yu XU. Effect of Mo/Nb/Ti/Zr Minor-alloying on the Second-phase Precipitation and Microhardness in Fe-Cl-Al Stainless Steels[J]. Chinese Journal of Materials Research, 2018, 32(8): 575-583.

全文: PDF(6320 KB)   HTML
摘要: 

研究了Mo/Nb/Ti/Zr微合金化对Fe-Cr-Al不锈钢中第二相的析出和显微硬度的影响。通过团簇式成分设计方法确定了三元基础成分为[Al-(Fe12Cr2)](Al0.5Cr0.5),进而根据相似元素替代原则添加微量元素设计出系列多元成分合金。使用真空电弧熔炼炉制备合金铸锭并对其进行1200℃/2 h的固溶处理,在800℃进行多道次热轧制成板材,最后进行800℃/24 h时效处理。对系列样品进行XRD结构分析、光学显微镜(OM)和扫描电镜(SEM)显微组织表征以及显微硬度测试。结果表明,添加微量合金化元素的种类和含量影响第二相粒子的析出状态。当合金化元素Mo与Nb的比例(原子百分比)为2:1时析出的第二相粒子在铁素体基体中弥散分布,且粒子尺寸较小,不锈钢的硬度较高为250 HV;在此基础上添加Ti替代Nb使第二相粒子的析出量显著降低而粒子尺寸略有增大,不锈钢的硬度较低为240 HV;添加Zr使析出相的粒子偏聚且粗化,但是其硬度仍然比较高(~246 HV)。

关键词 金属材料铁素体不锈钢Fe-Cr-Al系合金微合金化第二相析出    
Abstract

The effect of the minor addition of Mo, Nb, Ti, and Zr on the second-phase precipitation and microhardness of Fe-Cr-Al serial alloys were investigated. Ternary composition of [Al-(Fe12Cr2)](Al0.5Cr0.5) was first determined by the cluster formula approach, based on which a minor amount of alloying elements was added to form new alloys. Alloy ingots were prepared by vacuum arc melting, then solid-solution treated at 1200℃ for 2 h, and finally hot-rolled at 800℃ into plates. The plates were further aged at 800℃ for 24 h. The designed alloys were characterized by means of XRD analysis, OM , SEM and microhardness tester. Results showed that both the type and quantity of minor-alloying elements affect the second-phase precipitation. Specifically, when the atomic ratio of Mo:Nb=2:1 the second-phase particles presented as fine precipitates and distributed uniformly in the ferritic matrix, which results in the higher hardness of about 250 HV. While the addition of Ti decreases the volume fraction of precipitated particles in Mo/Nb/Ti-modified alloy obviously, in which the particle size is increased slightly, corresponding to the lower microhardness about 240 HV. The addition of Zr accelerates the segregation of precipitates and coarsens the particle size, but the Mo/Nb/Ti/Zr-modified alloy still showed a relatively-higher microhardness (about 246 HV).

Key wordsmetallic materials    ferritic stainless steels    Fe-Cr-Al-based alloys    micro-alloying    second-phase precipitation
收稿日期: 2017-11-16     
ZTFLH:  TG142  
基金资助:资助项目 中国核动力研究设计院反应堆燃料与材料重点实验室基金(ZX20150498);国家重点研发计划(2017YFB0702400);国际热核聚变实验堆计划(2015GB121004);国际科技合作计划(2015DFR60370);广西有色金属及特色材料加工重点实验室开放基金(GXKFJ16-11)
作者简介:

作者简介 王镇华,男,1994年生,硕士生

No. Formula Composition/atomic fraction, % Composition/mass fraction, %
1 Al1.5-Fe12-[Cr8(Mo2Nb)1]2.5 Fe75Al9.38Cr13.89Mo1.16Nb0.58 Fe78.61Al4.75Cr13.55Mo2.08Nb1.01
2 Al1.5-Fe12-[Cr8(MoNb)1]2.5 Fe75Al9.38Cr13.89Mo0.87Nb0.87 Fe78.62Al4.75Cr13.56Mo1.56Nb1.51
3 Al1.5-Fe12-[Cr8(Mo2(NbTi)1)1]2.5 Fe75Al9.38Cr13.89Mo1.16Ti0.29Nb0.29 Fe78.80Al4.76Cr13.59Mo2.09Ti0.26Nb0.50
4 Al1.5-Fe12-[Cr8(Mo2(TiZr)1)1]2.5 Fe75Al9.38Cr13.89Mo1.16Ti0.29Zr0.29 Fe78.80Al4.76Cr13.59Mo2.09Ti0.26Zr0.50
5 Al1.5-Fe12-[Cr8(Mo2(NbTiZr)1)1]2.5 Fe75Al9.38Cr13.89Mo1.16Nb0.19Ti0.19Zr0.19 Fe78.74Al4.75Cr13.58Mo2.09Nb0.34Ti0.17Zr0.33
表1  Fe-Cr-Al-M(M=Mo, Nb, Ti, Zr)系列合金的成分
图1  BCC结构中的菱形十二面体团簇,其中黄色原子为团簇中心原子,团簇壳层由最近邻8个蓝色原子和次近邻6个绿色原子构成
图2  Mo/Nb/Ti/Zr合金化的系列固溶Fe-Cr-Al合金的XRD谱以及Mo/Nb合金化的Fe-Cl-Al合金(No.1)固溶和热轧后的OM显微组织
图3  Mo/Nb/Ti/Zr合金化的Fe-Cr-Al系列合金热轧后的SEM背散射形貌
图4  Mo/Nb/Ti/Zr合金化的系列时效Fe-Cr-Al合金的XRD谱
图5  Mo/Nb/Ti/Zr合金化的Fe-Cr-Al系列合金经800℃/24 h时效后OM显微组织和SEM背散射形貌
Fe Cr Al Mo Nb Zr Ti
No.1 59.7±2.0 11.2±0.6 6.5±0.4 5.5±0.6 17.1±0.7
No.2 56.5±1.6 10.3±0.5 5.9±0.4 7.8±0.5 19.5±0.7
No.3 66.4±2.1 12.9±0.6 8.5±0.5 4.6±0.5 5.9±0.4 1.7±0.2
No.4 37.2±1.0 5.2±0.4 2.2±0.3 55.4±1.1
No.5 50.1±1.7 8.8±0.4 5.3±0.3 1.6±0.3 2.4±0.5 31.4±1.1 0.4±0.2
表2  Mo/Nb/Ti/Zr合金化的Fe-Cr-Al系列合金经800℃/24 h时效后第二相EDS能谱成分
图6  Mo/Nb/Ti/Zr合金化的系列Fe-Cr-Al合金时效后第二相粒子的体积分数
图7  Mo/Nb/Ti/Zr合金化的Fe-Cr-Al系列合金热轧和时效态的显微硬度HV
[1] Cockeram B V, Leonard K J, Byun T S, et al.Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 377~440℃[J]. J. Nucl. Mater., 2014, 449: 69
[2] Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
[3] Rebak R B.Alloy selection for accident tolerant fuel cladding in commercial light water reactors[J]. Metall. Mater. Trans., 2015, 2E: 197
[4] Wu X, Kozlowski T, Hales J D.Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Ann. Nucl. Energy, 2015, 85: 763
[5] George N M, Terrani K, Powers J, et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J]. Ann. Nucl. Energy, 2015, 75: 703
[6] Pint B A, Terrani K A, Brady M P, et al.High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. J. Nucl. Mater., 2013, 440: 420
[7] Cheng T, Keiser J R, Brady M P, et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. J. Nucl. Mater., 2012, 427: 396
[8] Qu H P, Lang Y P, Yao C F, et al.The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets[J]. Mater. Sci. Eng., 2013, 562A: 9
[9] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Met., 1995, 44: 113
[10] Yamamoto Y, Pint B A, Terrani K A, et al.Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. J. Nucl. Mater., 2015, 467: 703
[11] Field K G, Gussev M N, Yamamoto Y, et al.Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. J. Nucl. Mater., 2014, 454: 352
[12] Capdevila C, Chao J, Jimenez J A, et al.Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy[J]. Mater. Sci. Technol., 2013, 29: 1179
[13] Zhang J Z, Wen D H, Jiang B B, et al.Effects of Ta and Zr minor-alloying on the high-temperature microstructural stability of Fe-Cr-Al-based ferritic stainless steels[J]. Chin. J. Mater. Res., 2017, 31: 336(张军政, 温冬辉, 姜贝贝等. 微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响[J]. 材料研究学报, 2017, 31: 336)
[14] Bania P J.Beta titanium alloys and their role in the titanium industry[J]. JOM, 1994, 46(7): 16
[15] Barbangelo A.Influence of alloying elements and heat treatment on impact toughness of chromium steel surface deposits[J]. J. Mater. Sci., 1990, 25: 2975
[16] Hume-Rothery W.Atomic diameters, atomic volumes and solid solubility relations in alloys[J]. Acta Metall., 1966, 14: 17
[17] Zhu W H, Wang R S, Shu G G, et al.First-principles study of the structure, mechanical properties, and phase stability of crystalline zirconia under high pressure[J]. Struct. Chem., 2012, 23: 601
[18] Pang C, Jiang B B, Shi Y, et al.Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x, for BCC solid solution alloys[J]. J. Alloys Compd., 2015, 652: 63
[19] Wang Q, Ji C J, Wang Y M, et al.β-Ti alloys with low Young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
[20] Pang C, Wang Q, Zhang R Q, et al.β Zr-Nb-Ti-Mo-Sn alloys with low Young's modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model[J]. Mater. Sci. Eng., 2015, 626A: 369
[21] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40: R273
[22] Ma Y, Wang Q, Li C L, et al.Chemical short-range orders and the induced structural transition in high-entropy alloys[J]. Scripta Mater., 2018, 144: 64
[23] Zhang J, Wang Q, Wang Y M, et al.Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model[J]. J. Mater. Res., 2010, 25: 328
[24] Wang Q, Ma Y, Jiang B B, et al.A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scripta Mater., 2016, 120: 85
[25] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Metall. Trans., 2005, 46: 2817
[26] Tang R Z, Tian R Z.Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University Press, 2009(唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009)
[27] Voorhees P W.The theory of Ostwald ripening[J]. J. Stat. Phys., 1985, 38: 231
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.