Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (6): 455-463    DOI: 10.11901/1005.3093.2017.631
  研究论文 本期目录 | 过刊浏览 |
Ti60合金板材的室温强度与其显微组织和织构的关系
李文渊1,2, 刘建荣1, 陈志勇1(), 赵子博1, 王清江1
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
Effect of Microstructure and Texture on Room Temperature Strength of Ti60 Ti-Alloy Plate
Wenyuan LI1,2, Jianrong LIU1, Zhiyong CHEN1(), Zibo ZHAO1, Qingjiang WANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

李文渊, 刘建荣, 陈志勇, 赵子博, 王清江. Ti60合金板材的室温强度与其显微组织和织构的关系[J]. 材料研究学报, 2018, 32(6): 455-463.
Wenyuan LI, Jianrong LIU, Zhiyong CHEN, Zibo ZHAO, Qingjiang WANG. Effect of Microstructure and Texture on Room Temperature Strength of Ti60 Ti-Alloy Plate[J]. Chinese Journal of Materials Research, 2018, 32(6): 455-463.

全文: PDF(7209 KB)   HTML
摘要: 

研究了Ti60合金板材的组织、织构随热处理温度的变化规律及其对室温强度的影响。结果表明:对于Ti60合金板材,与轧制态相比,在α单相区热处理后显微组织和织构基本不变;随着热处理温度由α+β两相区升高到β单相区,等轴初生α相体积分数减少直至完全转变为片层次生α相,T型织构成分逐渐消失,并形成新的织构。在热处理温度下初生α相的体积分数,是决定是否形成新织构的主要因素:初生α相大量存在时次生α相的取向与之相近;初生α相体积分数减少对次生α相取向的影响减弱,次生α相的{0001}晶面易形成新的集中取向,与高温轧制变形后形成的β相织构有关。板材同一方向(TD或RD)的室温强度变化主要受晶内亚结构的影响:α单相区热处理后未消除晶内亚结构,板材的室温强度与轧态接近;α+β两相区和β单相区热处理消除了晶内亚结构,使强度明显降低。消除晶内亚结构后,板材相同方向的室温强度受显微组织的影响较小:初生α相体积分数的减少对室温强度没有明显的影响,在两相区不同温度热处理的板材其室温强度相当,β单相区热处理后板材的室温强度呈降低趋势,但是不同方向上的降低幅度受织构的影响较大。织构和晶内亚结构共同影响板材室温强度的各向异性,在晶体学c轴集中取向的方向上强度较高,晶内亚结构的存在弱化织构对拉伸强度各向异性的影响,在两相区和β单相区热处理消除了晶内亚结构,使板材的各向异性增强。

关键词 金属材料Ti60钛合金板材热处理显微组织织构室温强度各向异性    
Abstract

The evolution of microstructure and texture at different temperatures and its effect on room temperature strength in Ti60 Ti-alloy plates were investigated in the present work. There was no perceivable change of the microstructure or texture after heat treatment at 700?C compared with those of the as-rolled plate. In α+β and β phase regions equiaxed primary α grains shrank and ultimately transformed to secondary α phase, and T-type texture was replaced by a new type of texture with temperature increasing. It was indicated that whether new texture formed or not was significantly affected by the percentage of primary α phase during αβα phase transformation: by high percentage, the primary α phase strongly induced the secondary α phase to be with the similar orientation, thereby nearly no change of the texture; by low or zero percentage, part of the formed secondary α phase with new orientation, which was hardly affected by the primary α phase and was inferred as results of α variants selection dominated by texture of β grains formed during rolling at high temperature. Room temperature strength was mainly affected by the substructure: heat treatment in the α phase region didn't eliminate the substructure, the room temperature strength is comparable to that of the as-rolled plates; heat treatment in/above α+β phase field eliminated the substructure, resulting in large reduction of room temperature strength compared with the as-rolled plates. After eliminating the substructure, the room temperature strength was impacted by the microstructure: similar room temperature strength of plates heat treated in low and high α+β phase region is related to the limited effect of the percentage of equiaxed primary α phase on the strength; the room temperature strength decreased after heat treatment in β phase region, and the decrease amplitude in certain direction was remarkably affected by texture. The degree of room temperature anisotropy was influenced by the texture and substructure: higher strength exhibited along the crystallographic c axis; while the substructure weakened the influence of the texture on anisotropy, resulting in stronger anisotropy in plates heat treated in/above α+β phase region.

Key wordsmetallic materials    Ti60 Ti-alloy plate    heat treatment    microstructure    texture    room temperature strength    anisotropy
收稿日期: 2017-10-22     
ZTFLH:  TG142.25  
作者简介:

作者简介 李文渊,男,1989年生,博士生

图1  不同热处理状态Ti60钛合金板材的显微组织
图2  不同热处理状态Ti60钛合金板材的{0002}极图
图3  不同热处理状态Ti60钛合金板材TD和RD方向室温强度
图4  HT-αβL和HT-αβH热处理后板材组织的EBSD分析
图5  含T型织构Ti60钛合金板材的LM分析结果
[1] Boyer R R.An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, 213A: 103
[2] Banerjee D, Williams J C.Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
[3] Wang Q J, Liu J R, Yang R.High temperature titanium alloys: status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1
[4] Jin H X, Wei K X, Li J M, et al.Research development of titanium alloy in aerospace industry[J]. Chin. J. Nonfer. Metals, 2015, 25: 280金和喜, 魏克湘, 李建明等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25: 280
[5] Li M Q, Lin Y Y.Grain refinement in near alpha Ti60 titanium alloy by the thermohydrogenation treatment[J]. Int. J. Hydrogen Energy, 2007, 32: 626
[6] Jia W J, Zeng W D, Zhou Y G, et al.High-temperature deformation behavior of Ti60 titanium alloy[J]. Mater. Sci. Eng., 2011, 528A: 4068
[7] Sun F, Li J S, Kou H C, et al.β phase transformation kinetics in Ti60 alloy during continuous cooling[J]. J. Alloy. Compd., 2013, 576: 108
[8] Peng W W, Zeng W D, Wang Q J, et al.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J]. Mater. Des., 2013, 51: 195
[9] Yang L N, Liu J R, Tan J, et al.Dwell and normal cyclic fatigue behaviours of Ti60 alloy[J]. J. Mater. Sci. Technol., 2014, 30: 706
[10] Jia W J, Zeng W D, Yu H Q.Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy[J]. Mater. Des., 2014, 58: 108
[11] Zhao Z B, Wang Q J, Liu J R, et al.Texture of Ti60 alloy precision bars and its effect on tensile properties[J]. Acta Metall. Sin., 2015, 51: 561赵子博, 王清江, 刘建荣等. Ti60合金棒材中的织构及其对拉伸性能的影响[J]. 金属学报, 2015, 51: 561
[12] Zhao L, Liu J R, Wang Q J, et al.Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy[J]. Chin. J. Mater. Res., 2009, 23: 1赵亮, 刘建荣, 王清江等. 析出相对Ti60钛合金蠕变和持久性能的影响[J]. 材料研究学报, 2009, 23: 1
[13] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
[14] Williams D N, Eppelsheimer D S.Origin of the deformation textures of titanium[J]. Nature, 1952, 170: 146
[15] Dillamore I L, Roberts W T.Preferred orientation in wrought and annealed metals[J]. Metall. Rev., 1965, 10: 271
[16] Frederick S F, Lenning G A.Producing basal textured Ti-6Al-4V sheet[J]. Metall. Trans., 1975, 6B: 601
[17] Green J A S. Influence of texture on the corrosion and film formation of a titanium single crystal[J]. Corrosion, 1974, 30: 175
[18] Anderson A J, Thompson R B, Cook C S.Ultrasonic measurement of the Kearns texture factors in zircaloy, zirconium, and titanium[J]. Metall. Mater. Trans., 1999, 30A: 1981
[19] Leyens C, Peters M.Titanium and Titanium Alloys[M]. Weinheim: Wiley, 2003
[20] Bache M R, Evans W J. Impact of texture on mechanical properties in an advanced titanium alloy [J]. Mater. Sci. Eng., 2001, 319-321A: 409
[21] Bache M R, Evans W J, Suddell B, et al.The effects of texture in titanium alloys for engineering components under fatigue[J]. Int. J. Fatigue, 2001, 23(Suppl.): 153
[22] Bowen A W.The influence of crystallographic orientation on the fracture toughness of strongly textured Ti-6Al-4V[J]. Acta Metall., 1978, 26: 1423
[23] Tchorzewski R M, Hutchinson W B.Effect of texture on fatigue crack path in titanium-6Al-4V[J]. Met. Sci., 1978, 12: 109
[24] Li W Y, Chen Z Y, Liu J R, et al.Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate[J]. Mater. Sci. Eng., 2017, 688A: 322
[25] Yang L N.Dwell fatigue behavior and damage mechanism of Ti60 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2013杨丽娜. Ti60合金保载疲劳行为及损伤机制研究 [D]. 北京: 中国科学院大学, 2013
[26] Cayron C.Importance of the α→β transformation in the variant selection mechanisms of thermomechanically processed titanium alloys[J]. Scr. Mater., 2008, 59: 570
[27] Zhao Z B, Wang Q J, Hu Q M, et al.Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy[J]. Acta Mater., 2007, 126: 372
[28] Lee E, Banerjee R, Kar S, et al.Selection of α variants during microstructural evolution in α/β titanium alloys[J]. Philos. Mag., 2007, 87: 3615
[29] Zong Y Y, Xue K M, Shan D B, et al.Effect of heat treatment on the microstructure and mechanical properties of BT14 titanium alloy[J]. Mater. Sci. Technol., 2004, 12: 546宗影影, 薛克敏, 单德彬等. 热处理对BT14钛合金显微组织和力学性能的影响[J]. 材料科学与工艺, 2004, 12: 546
[30] Chen X W, Zhang S H, Wang Z T, et al.Effects of heat treatment conditions on microstructure and mechanical properties of TC11 titanium alloy[J]. Heat Treat. Met., 2007, 32(10): 48陈学伟, 张士宏, 王忠堂等. 热处理工艺对TC11钛合金组织及性能的影响[J]. 金属热处理, 2007, 32(10): 48
[31] Wang Z H, Xia C Q, Peng X M, et al.Effect of heat treatment on microstructure and mechanical properties of Ti62421s high temperature titanium alloy[J]. Chin. J. Nonfer. Met., 2010, 20: 2298王志辉, 夏长清, 彭小敏等. 热处理工艺对Ti62421s高温钛合金组织与力学性能的影响[J]. 中国有色金属学报, 2010, 20: 2298
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.