Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (6): 464-472    DOI: 10.11901/1005.3093.2017.626
  研究论文 本期目录 | 过刊浏览 |
碳纤维布增强的改性含硅芳炔树脂基复合材料的制备和性能
杨唐俊, 董斯堃, 袁荞龙(), 黄发荣
华东理工大学 特种功能高分子材料及相关技术教育部重点实验室 上海 200237
Preparation and Properties of Modified Silicon-containing Arylacetylene Resin Composite Reinforced by Carbon Fiber Cloth
Tangjun YANG, Sikun DONG, Qiaolong YUAN(), Farong HUANG
Key Laboratory for Specially Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology, Shanghai 200237, China
引用本文:

杨唐俊, 董斯堃, 袁荞龙, 黄发荣. 碳纤维布增强的改性含硅芳炔树脂基复合材料的制备和性能[J]. 材料研究学报, 2018, 32(6): 464-472.
Tangjun YANG, Sikun DONG, Qiaolong YUAN, Farong HUANG. Preparation and Properties of Modified Silicon-containing Arylacetylene Resin Composite Reinforced by Carbon Fiber Cloth[J]. Chinese Journal of Materials Research, 2018, 32(6): 464-472.

全文: PDF(2505 KB)   HTML
摘要: 

先合成双酚A型含硅芳炔醚(SAPE-BA)和二苯醚型含硅芳炔醚(SAPE-DPE)树脂并表征其结构,再将其与含硅芳炔树脂(PSA)共混得到改性树脂PSA/SAPE-BA和PSA/SAPE-DPE,用热模压法制备碳纤维布增强的改性PSA树脂基复合材料,研究了改性PSA树脂的加工工艺性能、热性能、力学性能和复合材料的力学性能。结果表明,与PSA树脂相比,改性PSA树脂不但具有较好的加工性能,还具有较好的耐热性能。两种改性PSA树脂的玻璃化转变温度(Tg)都高于500℃,在氮气中5%热失重温度(Td5)分别达550℃和590℃;这两种改性树脂浇注体的弯曲强度分别提高了78.3%和54.2%;碳纤维布T300增强PSA/SAPE-BA共混树脂基复合材料的弯曲强度和层间剪切强度(ILSS)分别提高了38.4%和33.5%;碳纤维布T300增强PSA/SAPE-DPE树脂复合材料的弯曲强度和ILSS分别提高了23.4%和21.8%。

关键词 复合材料含硅芳炔醚树脂含硅芳炔树脂共混力学性能    
Abstract

Silicon-containing aryl propargyl ether of bisphenol A (SAPE-BA) and silicon-containing aryl propargyl ether of diphenyl ether (SAPE-DPE) were synthesized and characterized. Then they were used to modify the silicon-containing arylacetylene resin (PSA) respectively by blend process. The modified PSA resins (PSA/SAPE-BA and PSA/SAPE-DPE) were reinforced with T300 carbon fabric to form composites of PSA resins by hot press. The processability, thermal stability, and the mechanical properties of the modified resins and their composites were further investigated. Results show that the modified PSA resins have not only good processing performance, but also high heat-resistance. In comparison with the cured simple PSA resin, the temperature at which 5% mass loss (Td5) of the two cured modified PSA resins in nitrogen were higher than 550℃ and 590℃, respectively, and the Tg of the cured modified PSA resins were higher than 500℃; The flexural strength of the cured modified resins, PSA/SAPE-BA and PSA/SAPE-DPE increased by 78.3% and 54.2%, respectively. While in comparison with the composite of T300 carbon fabric (T300CF) reinforced simple PSA, the flexural strength and interlayer shear strength (ILSS) of the composite of T300 carbon fabric (T300CF) reinforced PSA/SAPE-BA resin increased by 38.4% and 33.5%, and the flexural strength and ILSS of the composite of T300CF reinforced PSA/SAPE-DPE resin increased by 23.4% and 21.8%, respectively.

Key wordscomposites    silicon-containing aryl propargyl ether    silicon-containing arylacetylene    blend    mechanical property
收稿日期: 2017-10-20     
ZTFLH:  TB332  
基金资助:中央高校基本科研业务费专项资金(222201717001)
作者简介:

作者简介 杨唐俊,男,1991年生,硕士

图1  SAPE-BA树脂的合成
图2  SAPE-DPE树脂的化学结构
图3  含硅芳炔醚氢核磁(1H NMR)谱图
图4  含硅芳炔醚树脂的红外谱图
图5  改性PSA树脂体系在110℃黏时特性
Mass fraction of SAPE in PSA/% Gel time of two PSA/SAPE resins at 170℃/min
PSA/SAPE-BA PSA/SAPE-DPE
0 40 40
7 44 45
10 49 51
15 55 57
20 60 63
100 82 85
表1  SAPE改性PSA树脂在170℃下的凝胶时间
图6  SAPE-BA改性和SAPE-DPE改性PSA树脂的DSC曲线
Samples Ti/℃ Tp/℃ ΔH/Jg-1
PSA 199.9 239.3 555.6
PSA/SAPE-BA7 200.3 246.4 581.9
PSA/SAPE-BA10 204.1 248.0 590.4
PSA/SAPE-BA15 205.8 248.4 608.3
PSA/SAPE-BA20 208.4 251.1 615.4
PSA/SAPE-BA25 212.8 253.1 631.4
SAPE-BA 244.2 316.4 793.9
表2  SAPE-BA改性PSA树脂的DSC数据
Samples Ti/℃ Tp/℃ ΔH/Jg-1
PSA 199.9 239.3 555.6
PSA/SAPE-DPE7 201.0 247.8 582.4
PSA/SAPE-DPE10 206.6 249.9 615.3
PSA/SAPE-DPE15 207.6 255.2 781.2
PSA/SAPE-DPE20 208.4 257.4 822.6
SAPE-DPE 232.7 288.1 1409.0
表3  SAPE-DPE改性PSA树脂的DSC数据
图7  SAPE-BA改性和SAPE-DPE改性PSA树脂固化物的TGA曲线
Samples Td5/℃ Yc800℃/%
PSA 612.2 91.9
PSA/SAPE-BA7 598.5 91.6
PSA/SAPE-BA10 591.0 90.8
PSA/SAPE-BA15 575.5 89.8
PSA/SAPE-BA20 559.8 88.1
PSA/SAPE-BA25 552.3 87.6
SAPE-BA 421.5 58.7
表4  SAPE-BA改性PSA树脂固化物的TGA数据
Samples Td5/℃ Yc800℃/%
PSA 612.2 91.9
PSA/SAPE-DPE7 609.7 91.6
PSA/SAPE-DPE10 604.0 91.2
PSA/SAPE-DPE15 601.5 90.8
PSA/SAPE-DPE20 597.0 90.4
SAPE-DPE 418.0 66.2
表5  SAPE-DPE改性PSA树脂固化物的TGA数据
图8  SAPE树脂的热固化机理
图9  PSA树脂的热固化机理
图10  SAPE改性PSA树脂的弯曲性能
图11  PSA树脂与SAPE树脂的炔基交联反应
图12  PSA/SAPE-BA20和PSA/SAPE-DPE15改性PSA树脂DMA曲线
Resin matrix Flexural strength/MPa Flexural modulus/GPa ILSS/MPa
PSA 260.3±8.73 34.1±2.56 20.1±0.95
PSA/SAPE-BA20 360.1±6.72 49.1±1.67 26.9±0.64
PSA/SAPE-DPE15 321.1±7.71 49.4±4.36 24.5±0.54
表6  T300碳布增强改性PSA复合材料力学性能
[1] Itoh M, Inoue K, Iwata K, et al.New highly heat-resistant polymers containing silicon: Poly(silyleneethynylenephenyleneethynylene)s[J]. Macromolecules, 1997, 30: 694
[2] Itoh M, Iwata K, Ishikawa J I, et al.Various silicon-containing polymers with Si(H)-C≡C units[J]. J. Polym. Sci., Polym. Chem., 2001, 39A: 2658
[3] Ogasawara T, Ishikawa T, Yamada T, et al.Thermal response and ablation characteristics of carbon fiber reinforced composite with novel silicon containing polymer MSP[J]. J. Compos. Mater., 2002, 36: 143
[4] Wang C F, Huang F R, Jiang Y, et al.A novel oxidation resistant SiC/B4C/C nanocomposite derived from a carborane-containing conjugated polycarbosilane[J]. J. Am. Ceram. Soc., 2012, 95: 71
[5] Zhou Q, Mao Z J, Ni L Z, et al.Novel phenyl acetylene terminated poly(carborane-silane): Synthesis, characterization, and thermal property[J]. J. Appl. Polym. Sci., 2007, 104: 2498
[6] Gao F, Wang F, Zhang L L, et al.Synthesis and characterization of siloxane-containing arylacetylene resin[J]. J. Wuhan Univ. Technol., 2009, 31(21): 9高飞, 王帆, 张玲玲等. 含硅氧烷芳炔树脂的合成与表征[J]. 武汉理工大学学报, 2009, 31(21): 9
[7] Wang C F, Zhou Y, Huang F R, et al.Synthesis and characterization of thermooxidatively stable poly(dimethylsilyleneethynylenephenyleneethynylene) with o-carborane units[J]. Reac. Funct. Polym., 2011, 71: 899
[8] Cheng R, Zhou Q, Ni L Z, et al.Synthesis and thermal property of boron-silicon-acetylene hybrid polymer[J]. J. Appl. Polym. Sci., 2011, 119: 47
[9] Yang J H, Zhou Y, Huang F R, et al.Properties of a silicon-containing arylacetylene resin modified with silazane and its composite[J]. Aerosp. Mater. Technol., 2014, 44(6): 37杨建辉, 周燕, 黄发荣等. 硅氮烷改性含硅芳炔树脂及其复合材料的性能[J]. 宇航材料工艺, 2014, 44(6): 37
[10] Li X J, Chen H G, Yuan Q L, et al.Properties of a silicon-containing arylacetylene resin modified with an acetylene-terminated polyetherimide[J]. Petrochem. Technol., 2015, 44: 1115李晓杰, 陈会高, 袁荞龙等. 端乙炔基聚醚酰亚胺改性含硅芳炔树脂的性能[J]. 石油化工, 2015, 44: 1115
[11] Tong Y, Du F K, Yuan Q L, et al.Application and properties of silicon-containing arylacetylene resin and benzoxazine with functional groups blend[J]. Insul. Mater., 2016, 49(10): 24童旸, 杜峰可, 袁荞龙等. 含硅芳炔树脂/含官能团苯并噁嗪共混树脂的性能与应用[J]. 绝缘材料, 2016, 49(10): 24
[12] Huang J X, Du W, Zhang J, et al.Study on the copolymers of silicon-containing arylacetylene resin and acetylene-functional benzoxazine[J]. Polym. Bull., 2009, 62: 127
[13] Jiang Y, Li J F, Huang F R, et al.Polyme-derived SiC/B4C/C nanocomposites: Structural evolution and crystallization behavior[J]. J. Am. Ceram. Soc., 2014, 97: 310
[14] Xia K F, Qi H M, Sun F X.Copolymerization of diethynylbenzene with 4,4’-dipropargyl diphenylether and copolymer properties[J]. FRP/CM, 2008(6): 33夏科峰, 齐会民, 孙方兴. 4,4’-二炔丙氧基二苯醚与二乙炔基苯共聚合及其共聚物性能研究[J]. 玻璃钢/复合材料, 2008(6): 33
[15] Li F F, Wang C F, Shen X N, et al.Synthesis and characterization of novel silicon-containing aromatic bispropargyl ether resins and their composites[J]. Polym. J., 2011, 43: 594
[16] Shen X N, Xiao G, Tian X.Synthesis and characterization of silicon-containing dipropargyl ether resin[J]. Spec. Petrochem., 2013, 30(4): 62沈学宁, 肖刚, 田鑫. 含硅芳炔醚树脂的合成及表征[J]. 精细石油化工, 2013, 30(4): 62
[17] Yang G, Li B, Zhang M N, et al.High heat-resistant linear propargyl ether-terminated polymers containing Si-H group: Synthesis, characterization, and properties[J]. High Perform. Polym., 2014, 26: 290
[18] Douglas W E, Overend A S.Curing reactions in acetylene terminated resins-I. Uncatalyzed cure of arylpropargyl ether terminated monomers[J]. Eur. Polym. J., 1991, 27: 1279
[19] Tseng W C, Chen Y, Chang G W.Curing conditions of polyarylacetylene prepolymers to obtain thermally resistant materials[J]. Polym. Degrad. Stab., 2009, 94: 2149
[20] Kuroki S, Okita K, Kakigano T, et al.Thermosetting mechanism study of poly [(phenylsilylene) ethynylene-1, 3-phenyleneethynylene] by solid-state NMR spectroscopy and computational chemistry[J]. Macromolecules, 1998, 31: 2804
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.