Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 200-208    DOI: 10.11901/1005.3093.2017.605
  研究论文 本期目录 | 过刊浏览 |
固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响
赵开礼1, 刘永宝1, 于兴福2, 周驰滨2, 马欣新3
1 中国航发哈尔滨轴承有限公司 哈尔滨 150500;
2 沈阳工业大学材料科学与工程学院 沈阳 110870;
3 哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001;
Effect of Solid Solution- and Mesothermal Phase Transition- Treatment on Microstructure and Mechanical Property of Ball Bearing Steel 8Cr4Mo4V
Kaili ZHAO1, Yongbao LIU1, Xingfu YU2, Chibin ZHOU2, Xinxin MA3
1 AECC, Harbin Bearing Co. Ltd. Harbin 150500, China;
2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
3 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
引用本文:

赵开礼, 刘永宝, 于兴福, 周驰滨, 马欣新. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响[J]. 材料研究学报, 2018, 32(3): 200-208.
Kaili ZHAO, Yongbao LIU, Xingfu YU, Chibin ZHOU, Xinxin MA. Effect of Solid Solution- and Mesothermal Phase Transition- Treatment on Microstructure and Mechanical Property of Ball Bearing Steel 8Cr4Mo4V[J]. Chinese Journal of Materials Research, 2018, 32(3): 200-208.

全文: PDF(8530 KB)   HTML
摘要: 

在不同温度对8Cr4Mo4V钢固溶处理后在260℃盐浴中发生相转变而生成贝氏体组织,测定了钢的硬度和冲击韧性。使用扫描电镜、电子探针和光学显微镜等手段观察钢的微观组织,分析了合金元素扩散、贝氏体形核及贝氏体尺寸与固溶温度的关系,研究了固溶处理温度对力学性能的影响。结果表明,在1050℃和1065℃固溶处理后钢中的点状碳化物仍有剩余,阻碍了晶粒的长大;在1095℃和1110℃固溶处理后点状碳化物溶解,晶粒平均尺寸增大。固溶处理促使含Cr和V的碳化物溶解,但对含Mo碳化物的影响较小;高温固溶处理后Mo元素仍然存在于碳化物中,在基体中则较少。高温固溶处理使更多的Cr和V元素溶入基体中,降低了碳元素在基体中的扩散系数和贝氏体形核数目以及贝氏体的最终生成量,使贝氏体的组织粗化;随着固溶温度的提高,钢的硬度提高,而冲击韧性降低。

关键词 金属材料8Cr4Mo4V轴承钢贝氏体转变力学性能    
Abstract

The ball bearing steel 8Cr4Mo4V was heat treated by a two step process,i.e. solid solution treatment at temperatures in the range of 1050~1100oC, and followed with a mesothermal phase transition treatment at 260℃. The microstructure and mechanical property such as hardness and impact toughness of the treated steel were characterized by means of optical microscope scanning electron microscopy and electron probe as well as harness tester and impact tester. Results show that after solution treatment at 1050℃ and 1065℃, certain amount of tinny dot-like carbides still remain in the steel, which hinders the growth of the grains of the steel. However, after solution treatment at 1095℃ and 1110℃, the tinny dot-like carbides all dissolve, thus the average grain size increases. It is noted that the solution treatment only facilitate the solution of the Cr- and V-containing crabide, but not the Mo-containing one. As a result of the high temperature solid solution treatment, the Cr- and V-content of the matrix increase to certain extent, which can reduce the diffusion coefficient of carbon in the matrix and the number of nucleus for bainite formation and the final amount of bainite phase, therewith leading to coarsening of bainite phase. With the increase of solid solution temperature, the hardness of the steel increases, while the impact toughness decreases.

Key wordsmetallic materials    8Cr4Mo4V    bearing steel    bainitic transformation    mechanical property
收稿日期: 2017-10-13     
ZTFLH:  TG113  
基金资助:国家高技术研究发展计划(2015AA034303),黑龙江省应用技术研究与开发计划(GX16A004)
作者简介:

作者简介 赵开礼,男,1961年生

图1  在不同温度固溶后淬火钢的晶粒形貌
图2  平均晶粒尺寸与固溶温度的关系
图3  在不同温度固溶回火后8Cr4Mo4V钢中的贝氏体组织
图4  8Cr4Mo4V钢的硬度与固溶温度的关系
图5  8Cr4Mo4V 钢的冲击韧性与固溶温度的关系
图6  在1050℃固溶处理1 h后8Cr4Mo4V钢的微观形貌和元素分布
图7  在1110℃固溶处理1 h后8Cr4Mo4V钢的微观形貌和元素分布
图8  8Cr4Mo4V钢在260℃等温淬火与真空气淬回火组织的比较
图9  低温固溶和高温固溶贝氏体生长过程示意图
图10  经不同温度固溶和260℃等温淬火后贝氏体的形貌
[1] Wu Y B, Fan Z Q, Ye J Y.Effect of cold treatment of steel Cr4Mo4V on dimension and contact fatigue life at high temperature[J]. Special Steel, 1999, 20(3): 17(吴运榜, 樊志强, 叶健熠. 冷处理对Cr4Mo4V钢尺寸和高温接触疲劳寿命的影响[J]. 特殊钢, 1999, 20(3), 17)
[2] Vincent L, Coquillet B, Guiraldenq P.Fatigue damage of ball bearing steel: Influence of phases dispersed in the martensitic matrix[J]. Metallurgical Transactions A ,1980, 11(6): 1001
[3] Gong J X, Lei J Z.Effect of heat treatment process on microstructures and fracture toughness of steel Cr4Mo4V[J]. Bearing, 2015, (9): 35(龚建勋, 雷建中. 热处理工艺对Cr4Mo4V钢显微组织及断裂韧性的影响[J]. 轴承, 2015, (9): 35)
[4] Lin J S.Technical advance in rolling bearing of aero-engine shaft[J]. Gas Turbine Experiment and Research, 2003, 16(4): 52(林基恕. 航空发动机主轴滚动轴承的技术进展[J]. 燃气涡轮试验与研究, 2003, 16( 4): 52)
[5] Liang X J, Anthony J, Deardo A.Study of the influence of thermomechanical controlled processing on the microstructure of bainite in high strength plate Steel[J]. Metallurgical and Materials Transactions A, 2014, 45: 5173
[6] Houillier R L, Begin G, Dube A.A study of the peculiarities of austenite during the formation of bainite[J]. Metallurgical Transactions, 1971, 2: 2645
[7] Zhang R Y, Boyd J D.Bainite transformation in deformed austenite[J]. Metallurgical and Materials Transactions A, 2010, 41: 1448
[8] Zhou M X, Xu G, Wang L, et al. Combined effect of the prior deformation and applied stress on the bainite transformation [J]. Metals and Materials International, 2016, 22, 6: 956
[9] Shi L, Yan Z S, Liu Y C.Development of ferrite/bainite bands and study of bainite transformation retardation in HSLA steel during continuous cooling[J]. Metals and Materials International, 2014, 20(1): 19
[10] Yada H.Discussion of a mechanism for the formation of lower bainite[J]. Metallurgical and Materials Transactions A, 1991, 22A: 1674
[11] Chang M, Yu H.Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon micro-alloyed steel[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(5): 427
[12] Zhu Y Z, Xu J P.A method to study interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(9): 821
[13] Li W S, Gao H Y, Li Z Y.Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(3): 303
[14] Gensamer M, Pearsall E B, Pellini W S, et al.The tensile properties of pearlite, bainite, and spheroidite[J]. Metallography Microstructure & Analysis, 2012, 1(3-4): 171
[15] Zhou L N, Tang G Z, Ma X X.Effect of austenitizing temperature on microstructure of M50 steel[J]. Transaction of Materials and Heat Treatment, 2016, 37(7): 89(周丽娜, 唐光泽, 马欣新. 奥氏体化温度对M50钢组织转变的影响[J]. 材料热处理, 2016, 37(7): 89)
[16] Liu D J.China Aviation Material Handbook [M]. Beijing, Standards Press of China, 1988(刘德金, 中国航空材料手册[M]. 北京, 中国标准出版社, 1988)
[17] Zhang F C, Yang Z N, Lei J Z.Application progress of bainite steel in bearings[J]. Bearing, 2017, (1): 54(张福成, 杨志南, 雷建中. 贝氏体钢在轴承中的应用进展[J]. 轴承, 2017, (1): 54)
[18] Liang X, Deardo A J.A Study of the influence of thermomechanical controlled processing on the microstructure of bainite in high strength plate steel[J]. Metallurgical Transactions A, 2014, 45(11): 5173
[19] Caballero F G, Miller M K, Garcia-Mateo C.Atomic scale observations of bainite transformation in a high carbon high silicon steel[J]. Acta Materialia, 2007, 55(1): 381
[20] Aaronson H I.Decomposition of Austenite by Diffusional Processes[M]. Interscience, NewYork, NY, 1962
[21] Hillert M.Diffusion and interface control of reactions in alloys[J]. Metallurgical & Materials Transactions A, 1975, 6(1): 5
[22] Hillert M.Diffusion in growth of bainite[J]. Metallurgical & Materials Transactions A , 1994, 25(9): 1957
[23] Hu Z W, Xu G, Hu H J, In situ measured growth rates of bainite plates in an Fe-C-Mn-Si superbainitic steel[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(4): 371
[24] Pan J S, Gong J M, Tian M B.Foundation of Materials Science[M]. Beijing, Tsinghua University Press, 1998(潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京, 清华大学出版社, 1998)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.