Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (4): 283-289    DOI: 10.11901/1005.3093.2017.547
  研究论文 本期目录 | 过刊浏览 |
基体偏压对HiPIMS制备非晶碳膜结构和光电性能的影响
王丽1,2, 郭鹏2, 左潇2, 张栋2, 黄美东1(), 柯培玲2, 汪爱英2()
1 天津师范大学物理与材料科学学院 天津 300387
2 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
Influence of Substrate Bias on Microstructure, Optical- and Electrical- Properties of Amorphous- Carbon Films Prepared by High Power Pulse Magnetron Sputtering
Li WANG1,2, Peng GUO2, Xiao ZUO2, Dong ZHANG2, Meidong HUANG1(), Peiling KE2, Aiying WANG2()
1 Tianjin Normal University College of Physics and Materials Science, Tianjin 300387, China
2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials of Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

王丽, 郭鹏, 左潇, 张栋, 黄美东, 柯培玲, 汪爱英. 基体偏压对HiPIMS制备非晶碳膜结构和光电性能的影响[J]. 材料研究学报, 2018, 32(4): 283-289.
Li WANG, Peng GUO, Xiao ZUO, Dong ZHANG, Meidong HUANG, Peiling KE, Aiying WANG. Influence of Substrate Bias on Microstructure, Optical- and Electrical- Properties of Amorphous- Carbon Films Prepared by High Power Pulse Magnetron Sputtering[J]. Chinese Journal of Materials Research, 2018, 32(4): 283-289.

全文: PDF(1878 KB)   HTML
摘要: 

采用高功率脉冲磁控溅射(HiPIMS)工艺在单晶硅和石英基体上沉积a-C膜,研究了基体偏压对其结构和光电性能的影响。结果表明,基体偏压的变化能显著改变薄膜的微观结构。在偏压为0 ~ -300 V条件下制备的a-C膜,sp2的含量均为(52.5±1.5)%,基本不变。偏压为-50 V时sp2 团簇的尺寸达到最大值(约1.93 nm),薄膜的光学带隙(0.15 eV)和电阻率(0.32 Ω·cm)达到最小值;偏压继续提高则sp2团簇的尺寸先减小后增加,光学带隙和电阻率先增加后减小,符合非晶碳膜的团簇模型。HiPIMS工艺制备的非晶碳薄膜,其sp2团簇的尺寸决定了薄膜光学和电性学能。薄膜sp2团簇尺寸越大,则光学带隙和电阻率越小。

关键词 材料表面与界面非晶碳膜光电性能高功率脉冲磁控溅射微观结构    
Abstract

The effect of substrate bias voltages on the microstructure, optical- and electrical- properties of a-C films prepared by HiPIMS were investigated on silicon wafers and quartz glass respectively. Results show that different substrate biases lead to the change of microstructure of the a-C films. The sp2 content of a-C film prepared at bias of 0 ~ -300 V is (52.5±1.5)%. When the voltage was -50 V, the size of sp2 cluster reached the maximum (1.93 nm), yet the optical band gap (0.15 eV) and resistivity (0.32 Ω·cm) were minimum. Then the size of sp2 cluster decreased first and then increased with the increase of bias voltage, while the optical band gap and resistance of the films presented opposite tendency according to the cluster model. The size of sp2 clusters in a-C films by HiPIMS played the key role in the optical and electrical properties. The larger the size of the film sp2 cluster was, the smaller optical band gap and resistivity were.

Key wordssurface and interface in the materials    amorphous carbon    optical and electrical properties    HiPIMS    microstructure
收稿日期: 2017-09-14     
基金资助:资助项目 国家重点研发计划(2017YFB0702303),国家自然科学基金(51522106,51602319),浙江省博士后择优资助
作者简介:

作者简介 王 丽,女,1992年生,硕士生

图1  脉冲与直流电源并联的复合HiPIMS设备示意图
图2  沉积速率与偏压的关系以及偏压为-50 V沉积的a-C薄膜的表面形貌
图3  C 1s XPS光谱图和a-C薄膜sp2含量与偏压的关系
图4  Raman光谱、-50 V拉曼分峰图、不同偏压下的ID/IG、G峰半峰宽、G峰位置以及团簇尺寸随偏压变化
图5  不同波长范围内样品的透过率与偏压的关系
图6  0 V偏压条件下沉积的a-C薄膜的光学带隙图和a-C薄膜Eopt与偏压的关系
图7  a-C薄膜的电阻率与偏压的关系和在0 V偏压下制备的a-C薄膜的I-V特性图
图8  ID/IG与1/(Eopt)2的关系
[1] S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamondlike carbon[J]. Journal of Applied Physics, 1971, 42: 2953
[2] C. Donnet, A. Erdemir, Tribology of Diamond-Like Carbon Films[M], Springer US2008.
[3] A. Grill, Electrical and optical properties of diamond-like carbon[J]. Thin Solid Films, 1999, s355-356: 189
[4] M. Petersen, R. Bandorf, G. Br?uer, et al.Diamond-like carbon films as piezoresistors in highly sensitive force sensors[J]. Diamond and Related Materials, 2012, 26: 50
[5] M. Semenenko, G. Okrepka, O. Yilmazoglu, et al.Electrical conditioning of diamond-like carbon films for the formation of coated field emission cathodes[J]. Applied Surface Science, 2010, 257: 388
[6] S. Nakao, T. Soga, T. Sonoda, et al. Optical and electrical properties of nitrogen-doped diamond-like carbon films prepared by a bipolar-type plasma-based ion implantation[J]. Japanese Journal of Applied Physics, 2012, 51: 01AC04
[7] T. A. Silva, H. Zanin, P. W. May, et al.Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors[J]. ACS Appl Mater Interfaces, 2014, 6: 21086
[8] J. Y. Sze, B. K. Tay, D. Sheeja, et al.Optical and electrical properties of amorphous carbon films deposited using filtered cathodic vacuum arc with pulse biasing[J]. Thin Solid Films, 2004, 447: 148
[9] E. Mohagheghpour, M. Rajabi, R. Gholamipour, et al.Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique[J]. Applied Surface Science, 2016, 360: 52
[10] H. Y. Dai, X. R. Cheng, C. F. Wang, et al.Structural, optical and electrical properties of amorphous carbon films deposited by pulsed unbalanced magnetron sputtering[J]. Optik - International Journal for Light and Electron Optics, 2015, 126: 861
[11] Wu J Q.Microstructure and Properties of Amorphous Carbon and Carbon Nitride Thin Films[D]. Tianjin University, 2008(吴坚清. 非晶态碳膜和碳氮薄膜的结构与性质[D]. 天津大学, 2008)
[12] K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art[J]. Surface and Coatings Technology, 2010, 204: 1661
[13] Zhang X Q, Huang M D, Ke P L, et al.Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering[J]. Journal of vacuum material and technology, 2013, 33: 969(张学谦, 黄美东, 柯培玲等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究[J]. 真空科学与技术学报, 2013, 33: 969)
[14] Xue Q J, Wang L P.Diamond-like Carbon-based Film Materials[M]. Beijing: Science Press, 2015(薛群基, 王立平. 类金刚石碳基薄膜材料[M]. 北京: 科学出版社, 2015)
[15] P. Mérel, M. Tabbal, M. Chaker, et al.Direct evaluation of the sp 3 content in diamond-like-carbon films by XPS[J]. Applied Surface Science, 1998, 136: 105
[16] A. C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B, 2001, 64: 075414
[17] S. Prawer, K.W. Nugent, Y. Lifshitz, et al.Systematic variation of the Raman spectra of DLC films as a function of sp 2: sp 3 composition[J]. Diamond & Related Materials, 1996, 5: 433
[18] A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B Condensed Matter, 2008, 61: 14095
[19] M.E. Sanchez-Vergara, J. C. Alonso-Huitron, A. Rodriguez-Gomez, et al. Determination of the optical GAP in thin films of amorphous dilithium phthalocyanine using the Tauc and Cody models[J]. Molecules, 2012, 17: 10000
[20] I. Alexandrou, A. J. Papworth, C.J. Kiely, et al. Calculation of the bandgap and of the type of interband transitions in tetrahedral amorphous carbon using electron energy loss spectroscopy[J]. Diamond and Related Materials, 2004, 13: 1408
[21] A. C. Ferrari, B. Kleinsorge, N. A. Morrison, et al.Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon[J]. Journal of Applied Physics, 1999, 85: 7191
[22] J. Robertson, E.P. O' Reilly, Electronic and atomic structure of amorphous carbon[J]. Physical Review B Condensed Matter, 1987, 35: 2946
[23] M. Chhowalla, A. C. Ferrari, J. Robertson, G. A.J. Amaratunga, Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy[J]. Applied Physics Letters, 2000, 76: 1419
[24] J. Robertson, Diamond-like amorphous carbon[J]. Materials Science & Engineering R, 2002, 37: 129
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[5] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[7] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[8] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[9] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[10] 王艳坤, 王宇, 纪伟, 王智慧, 彭翔飞, 呼宇雄, 刘斌, 徐宏, 白培康. 碳纤维/铝复层材料的组织和力学性能[J]. 材料研究学报, 2022, 36(7): 536-544.
[11] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[12] 张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.
[13] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[14] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[15] 曾志鹏, 宋小艳, 孙勇, 宋双林, 陆伟, 贺正龙. 聚氨酯/水玻璃注浆材料固化过程中的微观结构和力学性能[J]. 材料研究学报, 2022, 36(11): 855-861.