Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 782-790    DOI: 10.11901/1005.3093.2017.545
  研究论文 本期目录 | 过刊浏览 |
聚合物电解质中导电物质含量对准固态电池光电性能的影响
张丹妮, 刘洁, 马飞阳, 杨光本, 刘峡霞, 李恒慧, 李望南, 梁桂杰()
湖北文理学院 低维光电材料与器件湖北省重点实验室 襄阳 441053
Effect of Conductive Substance Content in Polymer Electrolyte on Photovoltaic Performance of Quasi-solid-state Dye-sensitized Solar Cells
Danni ZHANG, Jie LIU, Feiyang MA, Guangben YANG, Xiaxia LIU, Henghui LI, Wangnan LI, Guijie LIANG()
Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
引用本文:

张丹妮, 刘洁, 马飞阳, 杨光本, 刘峡霞, 李恒慧, 李望南, 梁桂杰. 聚合物电解质中导电物质含量对准固态电池光电性能的影响[J]. 材料研究学报, 2018, 32(10): 782-790.
Danni ZHANG, Jie LIU, Feiyang MA, Guangben YANG, Xiaxia LIU, Henghui LI, Wangnan LI, Guijie LIANG. Effect of Conductive Substance Content in Polymer Electrolyte on Photovoltaic Performance of Quasi-solid-state Dye-sensitized Solar Cells[J]. Chinese Journal of Materials Research, 2018, 32(10): 782-790.

全文: PDF(1387 KB)   HTML
摘要: 

将聚乙烯吡咯烷酮(PVP)和聚环氧乙烷(PEO)共混用作胶凝剂,制备 (PEO-PVP)/LiI/I2凝胶电解质并组装成准固态敏化太阳电池。研究了电池中导电物质的含量对电解质的导电性能和TiO2/电解质界面的电子复合动力学的影响,以及电池光电性能的变化规律。结果表明,随着导电物质含量的提高TiO2上光生电子与电解质中I3-之间的复合电阻和复合反应因子逐渐减小,复合反应更加容易进行,使电池的开路电压(Voc)逐渐降低。随导电物质含量的提高电池的短路电流(Jsc)先增大后减小,其原因是:当导电物质含量(质量分数)较低(<15%)时Jsc受电解质的导电性能控制,导电物质含量提高引起的电导率增大使Jsc值增大;当含量较高(>15%)时电池中较大的暗电流(j0)成为影响Jsc的主导因素,导电物质含量提高引起的j0值增大使Jsc值相应减小。随着导电物质含量的提高电池的光电转化效率(η)先增加后减小,并在含量为15%时达到最佳值5.6%。

关键词 高分子材料凝胶电解质交流阻抗导电物质含量电荷复合动力学    
Abstract

Novel (PEO-PVP)/LiI/I2 gel electrolyte was prepared by blending polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO), and then the quasi-solid-state sensitized solar cell was prepared with the electrolyte. The effect of the amount of conductive substance on the conductivity of electrolyte, interfacial recombination kinetics between TiO2 and electrolyte, and the photoelectric performance of the DSSC was investigated. It follows that with the increase amount of the conductive substance, the recombination resistance and recombination reaction factor decrease gradually for the recombination between the light-generated electrons on TiO2 with the I3- in the electrolyte, thereby the recombination reaction is facilitated, correspondingly the open circuit voltage (VOC) of the dye-sensitized solar cells (DSSC) also reduced gradually. When the conductive substance is less than 15% (in mass fraction), the short-circuit current (Jsc) is controlled by the conductivity of the electrolyte, and the increase of the conductive substance may result in enhancement of the conductivity and the Jsc value. When the conductive substance is more than 15%, the dark current (j0) of the DSSC becomes the dominant factor affecting the Jsc value, and the increase of the conductive substance caused increase of j0 while decrease of the Jsc. The conversion efficiency (η) of the DSSC increases first and then decreases with the increase of the conductive substance and which reaches the optimum value of 5.6% when the amount of conductive substance is 15%.

Key wordspolymer materials    gel electrolyte    electrochemical impedance    conductive species contents    charge recombination kinetics
收稿日期: 2017-09-13     
ZTFLH:  O646  
基金资助:国家自然科学基金(51502085),襄阳市科技研究开发项目和湖北省优势特色学科群基金(XKQ2018001)
作者简介:

作者简介 刘洁,女,1994年生,本科生;张丹妮,女,1995年生,本科生

图1  凝胶电解质的吸收光谱,插图为电解质在230 nm(对应I-的吸收)和293 nm(对应I3-)处的吸收强度随导电物质含量的变化关系
图2  凝胶电解质的循环伏安曲线
图3  凝胶电解质的稳态线性扫描曲线
图4  电解质的离子扩散系数随温度的变化
图5  电解质的Nyquist阻抗谱图
图6  电解质的离子电导率与温度的关系
图7  电池在光照(a)和暗态(b)条件下的室温J-V曲线
Conductive species contents Ilim
/mA·cm-2
Dapp×10-4 /cm2·s-1 Rb
σ ×10-3
/S·cm-1
Voc/V Jsc/mA·cm-2 ff / % η / % Rs
at 0.7 V
RPt
at 0.7 V
Rct
at 0.7 V
2 % 1.81 2.58 427.7 1.40 0.745 7.5 58.1 3.8 29.4 200.8 462.5
5 % 4.53 2.49 214.9 2.79 0.727 8.3 55.3 4.0 29.2 51.3 167.0
10 % 5.19 1.35 79.6 7.53 0.705 10.5 62.4 5.3 27.6 2.2 127.4
15 % 5.32 0.93 60.8 9.86 0.685 11.1 61.7 5.6 27.3 1.9 93.2
20 % 5.43 0.57 32.6 18.40 0.619 10.7 63.3 5.0 25.0 1.1 55.9
表1  室温(30℃)下凝胶电解质的导电性能及其电池的光电性能参数
图8  DSSC的开路电压Voc、短路电流Jsc以及(c)光电转化效率η随电解质中的导电物质含量的变化
图9  0.4 V~0.6 V和0.7 V~0.8 V偏压下电池的等效电路图以及不同偏压下DSSC的Nyquist阻抗图
图10  电池中TiO2/电解质界面电子复合电阻与偏压的关系和线性拟合线
[1] O'Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737
[2] Gr?tzel M.Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338
[3] Mathew S, Yella A, Gao P, et al.Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat. Chem., 2014, 6(3): 242
[4] Kim J, Koh J K, Kim B, et al.Enhanced performance of I2-Free solid-state dye-sensitized solar cells with conductive polymer up to 6.8%[J]. Adv. Funct. Mater., 2015, 21(24): 4633
[5] Rong Y G, Mei A Y, Liu L F, et al.All-solid-state mesoscopic solar cells: from dye-sensitized to perovskite[J]. Acta Chim. Sinica, 2015, 73(3): 237(荣耀光, 梅安意, 刘林峰等. 全固态介观太阳能电池:从染料敏化到钙钛矿[J]. 化学学报, 2015, 73(3): 237)
[6] Kumara G R A, Kaneko S, Okuya M, et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor[J]. Langmuir, 2002, 18(26): 10493
[7] Perera V P S, Senevirathna M K I, Pitigala P K D D P, et al. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells[J]. Sol. Energ. Mat. Sol. C., 2005, 86(3): 443
[8] Ding I K, Tétreault N, Brillet J, et al.Pore-filling of spiro-OMeTAD in solid-state dye sensitized solar cells: quantification, mechanism, and consequences for device performance[J]. Adv. Funct. Mater., 2009, 19(15): 2431
[9] Jiang K J, Manseki K, Yu Y H, et al.Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT[J]. Adv. Funct. Mater., 2009, 19(15): 2481
[10] Murakoshi K, Kogure R, Wada Y, et al.Fabrication of solid-state dye-sensitized TiO2, solar cells combined with polypyrrole[J]. Sol. Energ. Mat. Sol. C., 1998, 55(1-2): 113
[11] Duan Y, Tang Q, Chen Y, et al.Solid-state dye-sensitized solar cells from poly(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics[J]. J. Mater. Chem. A, 2015, 3(10): 5368
[12] Li X P, Fang S B, Kang J J, et al.Quasi solid state dye-sensitized solar cells with polymer electrolytes based on polysiloxanes[J]. Acta Energi. Sin., 2007, 28(8): 929(李学萍, 方世璧, 康俊杰等. 聚硅氧烷为基体的聚合物电解质准固态染料敏化太阳电池[J]. 太阳能学报, 2007, 28(8): 929)
[13] Kang J, Li W, Wang X, et al.Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells[J]. Electrochim. Acta, 2003, 48(17): 2487
[14] Li M, Feng S, Fang S, et al.The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells[J]. Electrochim. Acta, 2007, 52(14): 4858
[15] Zhang Y H, Zhu J, Dai S Y.Recent research development on solid state and quasi-solid state electrolyte for dye-sensitized Solar Cells[J]. Chem., 2010, 73(12): 1059(张耀红, 朱俊, 戴松元. 染料敏化太阳能电池用固态及准固态电解质的研究进展[J]. 化学通报, 2010, 73(12): 1059)
[16] Zhang Y X, Huo Z P, Zhang C N, et al.Research on the dye-sensitized solar cells based on P(VDF-HFP)-type polymer gel electrolyte[J]. Acta chim. Sinica, 2009, 67(19): 2253(张玉香, 霍志鹏, 张昌能等. 基于偏氟乙烯-六氟丙烯共聚物凝胶电解质的染料敏化太阳电池光电性能研究[J]. 化学学报, 2009, 67(19): 2253)
[17] Fenton D E, Parker J M, Wright P V.Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589
[18] Ren Y, Zhang Z, Fang S, et al.Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells[J]. Sol. Energ. Mat. Sol. C., 2002, 71(2): 253
[19] Wang M, Xiao X, Zhou X, et al.Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells[J]. Key Eng. Mater., 2007, 91(9): 785
[20] Jin H R, Jin J, Xu J, et al.Preparation of iodine-free ionic liquid gel electrolyte using polyethylene oxide (PEO)-polyethylene glycol (PEG) and its application in Ti-foil-based dye-sensitized solar cells[J]. Electrochim. Acta, 2016, 201: 251
[21] Takikawa K, Nakano M, Arita T.Change in Apparent Permeability of Iodine in the Presence of Polyvinylpyrrolidone[J]. Chem. Pharm. Bull., 2008, 26(3): 874
[22] Xu N, Ding D.Preparation and antibacterial activity of chitosan derivative membrane complexation with iodine[J]. Rsc Adv., 2015, 5(97): 79820
[23] Xu J, Zhao P, Zhang Y.Iodine-responsive poly (HEMA-PVP) hydrogel for self-regulating burst-free extended release[J]. J. Biomat. Sci-Polym. E., 2017, 28(5): 470
[24] Liu Y, Hagfeldt A, Xiao X R, et al.Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell[J]. Sol. Energ. Mater. Sol. C., 1998, 55(3): 267
[25] Li R, Liu D X, Zhou D F, et al.Influence of the electrolyte cation in organic dye-sensitized solar cells: lithium versus dimethylimidazolium[J]. Energ. Environ. Sci., 2010, 3(11): 1765
[26] Jung N E, Lee D K, Kim Y R, et al.Effect of iodine concentration in the quasi-solid state electrolyte on the photovoltaic performance of dye-sensitized solar Cells[J]. Mol. Cryst. Liq. Cryst., 2015, 620(1): 123
[27] Mathew A, Anand V, Rao G M, et al.Effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells for various I2/LiI ratios[J]. Electrochim. Acta, 2013, 87(1): 92
[28] Fukui A, Komiya R, Yamanaka R, et al.Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell[J]. Sol. Energ. Mater. Sol. C., 2006, 90(5): 649
[29] Boschloo G, Leif H?ggman A, Hagfeldt A.Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells[J]. J. Phys. Chem. B, 2006, 110(26): 13144
[30] Kang M S, Kim J H, Won J, et al.Dye-sensitized solar cells based on crosslinked poly(ethylene glycol) electrolytes[J]. J. Photochem. Photobio. A, 2006, 183(1): 15
[31] Sakaguchi S, Ueki H, Kato T, et al.Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators[J]. J. Photochem. Photobio. A, 2004, 164(1-3): 117
[32] Nazeeruddin M K, Kay A, Rodicio I, et al.Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes[J]. J. Am. Chem. Soc., 1993, 115(14): 6382
[33] Huang S Y, Schlichth?rl G, Nozik A J, et al.Charge recombination in dye-sSensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B, 1997, 101(14): 2576
[34] Wang Q, Ito S, Gr?tzel M, et al.Characteristics of high efficiency dye-sensitized solar cells[J]. J. Phys. Chem. B, 2006, 110(50): 25210
[35] Xu X Q, Xu G.Electrochemical impedance spectra of CdSe quantume dots sensitized nanocrystalline TiO2 solar cells[J]. Sci. China. Chem., 2011, 41(1): 37(徐雪青, 徐刚. CdSe量子点敏化纳米二氧化钛太阳电池的电化学交流阻抗谱[J]. 中国科学: 化学, 2011, 41(1): 37)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 徐春萍, 陈春悦, 张永航, 龚维, 班大明. 含磷聚合物型阻燃剂(PMP)对乙烯基酯树脂(VER)的阻燃改性[J]. 材料研究学报, 2021, 35(11): 843-849.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.