Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (6): 439-448    DOI: 10.11901/1005.3093.2017.493
  研究论文 本期目录 | 过刊浏览 |
LPSO相增强Mg-6Gd-4Y-xZn合金的组织与力学性能
甄睿1,2(), 孙扬善3, 沈学为1, 巴志新1,2
1 南京工程学院材料工程学院 南京 211167
2 江苏省先进结构材料与应用技术重点实验室 南京 211167
3 东南大学材料科学与工程学院 江苏省先进金属材料高技术研究重点实验室 南京 211189
Microstructures and Mechanical Properties of Mg-6Gd-4Y-xZn Alloys Reinforced with LPSO Phases
Rui ZHEN1,2(), Yangshan SUN3, Xuewei SHEN1, Zhixin BA1,2
1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
3 Jiangsu Key Lab of Advanced Metallic Materials, College of Material Science & Engineering, Southeast University, Nanjing 211189, China;
引用本文:

甄睿, 孙扬善, 沈学为, 巴志新. LPSO相增强Mg-6Gd-4Y-xZn合金的组织与力学性能[J]. 材料研究学报, 2018, 32(6): 439-448.
Rui ZHEN, Yangshan SUN, Xuewei SHEN, Zhixin BA. Microstructures and Mechanical Properties of Mg-6Gd-4Y-xZn Alloys Reinforced with LPSO Phases[J]. Chinese Journal of Materials Research, 2018, 32(6): 439-448.

全文: PDF(9095 KB)   HTML
摘要: 

制备了3种LPSO相增强Mg-6Gd-4Y-xZn (x=1,2,3)(%,质量分数,下同)四元镁合金,研究了不同Zn含量对合金显微组织和室温力学性能的影响,并探讨了合金中LPSO相的形成与演变过程及其对合金的强化机制。研究结果表明,Mg-6Gd-4Y-3Zn合金的铸态组织主要由α-Mg和18R长周期结构相Mg12Y1Zn1相组成。若降低合金中的Zn含量,显微组织中会出现Mg24(GdYZn)5。3种合金的退火组织均由α-Mg、18R-LPSO和14H-LPSO相组成,且随着Zn含量的增加,合金中18R-LPSO相的体积分数增加且基体中14H-LPSO相的层片变粗。挤压态合金在T6和T5处理的过程中均发生了β' 沉淀。随着Zn含量增加,合金Mg-6Gd-4Y-xZn(包括挤压态和时效态)在常温下的抗拉强度降低。显微组织中18R-LPSO相、细小弥散分布的14H-LPSO相和β'沉淀相共存方能实现理想的强化效果。

关键词 金属材料镁合金热挤压时效处理长周期结构强化机理    
Abstract

Three quaternary Mg-alloys of Mg-6Gd-4Y-xZn (x=1, 2, 3, mass fraction, %) were prepared, while all the alloys contained strengthened phases of long period stacking ordered (LPSO) structure. The effect of Zn-concentration on the microstructure and mechanical property of the alloys, as well as the formation and evolution of LPSO phases in the alloys and their strengthening mechanism were also studied. Results show that the as-cast microstructure of the Mg-6Gd-4Y-3Zn alloy consists of α-Mg matrix and Mg12Y1Zn1 phase which presents 18R long period staking ordered (18R-LPSO) structure. The Mg24(GdYZn)5 eutectic was observed in the as cast microstructure of the alloys with lower Zn additions. After homogenizing annealing, the microstructure of all the quaternary alloys consists of a-Mg matrix, 18R-LPSO- and 14H-LPSO-phases. With the increase of Zn content, the volume fraction of 18R-LPSO phase increases and the lamellae of the 14H-LPSO phase in the matrix are thickened. Both T6- and T5-treatments result in the β' precipitation. The tensile strength of Mg-6Gd-4Y-xZn alloys decreases with the increase of Zn content. The ideal strengthening effect can be achieved by the coexistence of 18R-LPSO phase, small and well distributed precipitates of 14H-LPSO phase and β' precipitates in the microstructure.

Key wordsmetallic materials    magnesium alloy    hot extrusion    aging treatment    long period stacking ordered structures (LPSO)    strengthening mechanism
收稿日期: 2017-08-18     
ZTFLH:  TG146.22  
基金资助:江苏省优秀青年基金(BK20160081),南京工程学院科研基金(ZKJ201604),江苏高校优秀科技创新团队
作者简介:

作者简介 甄睿,女,1978年生,副教授,博士

Alloy Design composition Actual composition
Gd Y Zn Mg Gd Y Zn Mg
GWZ641(Mg-6Gd-4Y-1Zn) 6.0 4.0 1.0 Bal. 5.1 3.8 0.88 Bal.
GWZ642(Mg-6Gd-4Y-2Zn) 6.0 4.0 2.0 Bal. 6.3 3.6 2.2 Bal.
GWZ643(Mg-6Gd-4Y-3Zn) 6.0 4.0 3.0 Bal. 6.5 4 2.7 Bal.
表1  合金的化学成分
图1  铸态GWZ641、GWZ642和GWZ643合金的XRD图谱
图2  GWZ642合金的铸态显微组织
图3  GWZ641铸态合金中Mg12Y1Zn1 相的TEM像和电子衍射花样
图4  退火态GWZ641、GWZ642和GWZ643合金的OM像
图5  GWZ641退火态合金中层片相的TEM像和电子衍射花样(EB//[112?0])
图6  GWZ642合金挤压态的显微组织
图7  T4态GWZ642合金的OM像
图8  GWZ641(a)、GWZ642(b)和GWZ643(c)合金在不同温度下T6处理的时效硬化曲线
图9  GWZ641 与GWZ642 合金T6态组织的OM和TEM像
图10  GWZ641 与GWZ643 合金T5 态组织的OM和TEM像 2.4 力学性能
State GWZ641 GWZ642 GWZ643
σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/%
As-cast 136 120 2.2 152 121 2.30 146 122 2.60
Extruded 342 232 7.4 329 208 5.7 286 160 4.23
T4-peak-aged 330 218 18.6 276 162 14.2 251 150 12.1
T6-peak-aged 438 309 6.8 281 165 15.14 253 151 10.98
T5-peak-aged 397 260 4.6 339 201 10.43 302 196 5.89
表2  不同处理状态合金的室温力学性能
图11  GWZ641合金挤压态拉伸试样中18R-LPSO相与14H-LPSO相的TEM照片
图12  挤压态合金GWZ641中14H-LPSO相的TEM照片
[1] Kawamura Y, Hayashi K, Inoue A, et al.Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J]. Mater. Trans., 2001, 42: 1171
[2] Han X Z, Xu W C, Shan D B.Effect of precipitates on microstructures and properties of forged Mg-10Gd-2Y-0.5Zn-0.3Zr alloy during ageing process[J]. J. Alloy. Compd., 2011, 509: 8625
[3] Zhu J, Chen J B, Liu T, et al.High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology[J]. Mater. Sci. Eng., 2017, 679A: 476
[4] Yamasaki M, Anan T, Yoshimoto S, et al.Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scr. Mater., 2005, 53: 799
[5] Liu H, Xue F, Bai J, et al.Effect of heat treatments on the microstructure and mechanical properties of an extruded Mg95.5Y3Zn1.5 alloy[J]. Mater. Sci. Eng., 2013, 585A: 261
[6] Lu F M, Ma A B, Jiang J H, et al.Effect of multi-pass equal channel angular pressing on microstructure and mechanical properties of Mg97.1Zn1Gd1.8Zr0.1 alloy[J]. Mater. Sci. Eng., 2014, 594A: 330
[7] Garcés G, Maeso M, Todd I, et al.Deformation behaviour in rapidly solidified Mg97Y2Zn (at.%) alloy[J]. J. Alloy. Compd., 2007, 432: L10
[8] Liu K, Rokhlin L L, Elkin F M, et al.Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg-7Y-4Gd-1.5Zn-0.4Zr alloy[J]. Mater. Sci. Eng., 2010, 527A: 828
[9] Yang Z, Li J P, Guo Y C, et al. Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy [J]. Mater. Sci. Eng., 2007, 454-455A: 274
[10] Chino Y, Mabuchi M, Hagiwara S, et al.Novel equilibrium two phase Mg alloy with the long-period ordered structure[J]. Scr. Mater., 2004, 51: 711
[11] Zhu J, Chen X H, Wang L, et al.High strength Mg-Zn-Y alloys reinforced synergistically by Mg12ZnY phase and Mg3Zn3Y2 particle[J]. J. Alloy. Compd., 2017, 703: 508
[12] Matsuda M, Ii S, Kawamura Y, et al.Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy[J]. Mater. Sci. Eng., 2005, 393A: 269
[13] Kim J K, Sandl?bes S, Raabe D.On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures[J]. Acta Mater., 2015, 82: 414
[14] Chen R, Sandl?bes S, Zeng X Q, et al.Room temperature deformation of LPSO structures by non-basal slip[J]. Mater. Sci. Eng., 2017, 682A: 354
[15] Wen K, Liu K, Wang Z H, et al.Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy[J]. Mater. Sci. Eng., 2016, 674: 33
[16] Wu J, Shi Q, Ma H C, et al.Microstructure and mechanical behaviour of a Mg94Zn2Y4 alloy processed by equal channel angular pressing[J]. Mater. Sci. Eng., 2016, 669A: 417
[17] Hagihara K, Kinoshita A, Sugino Y, et al.Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Mater., 2010, 58: 6282
[18] Hagihara K, Yokotani N, Umakoshi Y.Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure[J]. Intermetallics, 2010, 18: 267
[19] Xu C, Zheng M Y, Xu S W, et al.Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing[J]. Mater. Sci. Eng., 2015, 643A: 137
[20] Liu H, Xue F, Bai J, et al.Microstructures and mechanical properties of Mg-(2, 3, 4)Y-1Zn alloys with long period stacking ordered structure[J]. Acta Metall. Sin., 2013, 49: 236刘欢, 薛烽, 白晶等. 含长周期结构Mg-(2, 3, 4)Y-1Zn合金的显微组织和力学性能[J]. 金属学报, 2013, 49: 236
[21] Itoi T, Seimiya T, Kawamura Y, et al.Long period stacking structures observed in Mg97Zn1Y2 alloy[J]. Scr. Mater., 2004, 51: 107
[22] Liu K, Zhang J H, Su G H, et al.Influence of Zn content on the microstructure and mechanical properties of extruded Mg-5Y-4Gd-0.4Zr alloy[J]. J. Alloy. Compd., 2009, 481: 811
[23] Chen B, Lin D L, Zeng X Q, et al.Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing[J]. J. Alloy. Compd., 2007, 440: 94
[24] Wang J F, Song P F, Zhou X E, et al.Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg-5Zn-5Y-0.6Zr magnesium alloy[J]. Mater. Sci. Eng., 2012, 556A: 68
[25] Zhang S, Liu W C, Gu X Y, et al.Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg-14Gd-3Y-1.8Zn-0.5Zr alloy[J]. J. Alloy. Compd., 2013, 557: 91
[26] Wang J F, Song P F, Huang S, et al.Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg-9Gd-xEr-1.6Zn-0.6Zr magnesium alloys[J]. Mater. Sci. Eng., 2013, 563A: 36
[27] Shao X H, Yang Z Q, Ma X L.Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Mater., 2010, 58: 4760
[28] Zhu Y M, Morton A J, Nie J F.The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Mater., 2010, 58: 2936
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.