Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (6): 432-431    DOI: 10.11901/1005.3093.2017.426
  研究论文 本期目录 | 过刊浏览 |
Mo含量对D2钢组织与性能的影响
李旭敏1, 方峰1, 涂益友1, 周雪峰1(), 吴建忠2, 徐辉霞2
1 江苏省先进金属材料高技术研究重点实验室 东南大学材料科学与工程学院 南京 211189
2 江苏(天工)工模具钢工程技术研究中心 丹阳 215400
Effect of Molybdenum on Microstructure and Properties of AISI D2 Tool Steel
Xumin LI1, Feng FANG1, Yiyou TU1, Xuefeng ZHOU1(), Jianzhong WU2, Huixia XU2
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Engineering Research Center of Tool Steel, Danyang 215400, China
引用本文:

李旭敏, 方峰, 涂益友, 周雪峰, 吴建忠, 徐辉霞. Mo含量对D2钢组织与性能的影响[J]. 材料研究学报, 2018, 32(6): 432-431.
Xumin LI, Feng FANG, Yiyou TU, Xuefeng ZHOU, Jianzhong WU, Huixia XU. Effect of Molybdenum on Microstructure and Properties of AISI D2 Tool Steel[J]. Chinese Journal of Materials Research, 2018, 32(6): 432-431.

全文: PDF(9901 KB)   HTML
摘要: 

采用OM、SEM、TEM、XRD、EDS等分析手段,研究了Mo含量变化对D2钢组织和性能的影响规律。结果表明,随Mo含量增加,D2钢铸态组织晶粒细化,共晶碳化物数量增多,形态由细长棒状转变为条块状和鱼骨状。与棒状碳化物相比,鱼骨状和条块状碳化物热稳定性增强,加热过程中难以溶解和球化,导致淬火后基体中合金固溶度降低,回火后硬度下降。D2钢Mo含量最佳范围为0.9%~1.1%(质量分数),此时淬回火硬度可达61 HRC,冲击韧性20 J/cm2以上,具有良好的综合使用性能。

关键词 金属材料D2模具钢Mo元素碳化物硬度冲击韧性    
Abstract

Effect of Mo-content on the microstructure and properties of AISI D2 tool steel has been studied by means of OM, SEM, TEM, XRD and EDS. Results show that with the increasing Mo-content, the grain size of the steel decreased, while the amount of eutectic carbides increased, and the morphology of which changed from rod-like to fish bone-like and block-like. The thermal stability of the fish bone-like and block-like carbides is higher than that of the rod-like ones, thereby, they are difficult to dissolve and spheroidize during heating process. This fact may result in the decrease in solubility of alloying elements after quenching, and the decrease in hardness after tempering. The optimum Mo content is between 0.9% and 1.1%, correspondingly, the hardness of the tempered D2 steel is 61 HRC, and the impact toughness reaches about 20 J/cm2.

Key wordsmetallic materials    D2 tool steel    molybdenum    carbide    hardness    impact toughness
收稿日期: 2017-07-14     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51301038),江苏省重点研发计划(BE2016154),丹阳市科技发展专项资金(SGP201502)
作者简介:

作者简介 李旭敏,女,1994年生,硕士生

图1  不同Mo含量的D2钢铸态组织
图2  不同Mo含量的D2钢共晶碳化物的三维形貌
The morphology of carbides Mo Cr Fe
Rod-like 2.3 47.3 49.1
Fishbone-like 4.0 46.6 48.1
Block-like 7.0 45.3 45.9
表1  不同形态的碳化物的合金元素含量(质量分数)
图3  不同Mo含量的D2钢碳化物粉末的XRD图谱
图4  D2钢M7C3共晶碳化物的明场像和衍射花样
图5  D2钢碳化物热处理后的三维扫描照片
图6  锻压比为6时D2钢锻材SEM形貌
图7  D2钢在1100℃下淬火后的微观组织
图8  不同淬火温度下D2钢基体合金元素含量
图9  不同Mo含量的D2钢淬回火态硬度和冲击韧性
[1] Zhang J F.Mold Material and Heat Treatment [M]. Beijing: China Machine Press, 2010张金凤. 模具材料与热处理 [M]. 北京: 机械工业出版社, 2010
[2] Chen Z Z, Ma D S.Advance in die steel products at home and abroad[J]. Spec. Steel, 2006, 27(5): 37陈再枝, 马党参. 国内外模具钢产品的进展[J]. 特殊钢, 2006, 27(5): 37
[3] Singh K, Khatirkar R K, Sapate S G. Microstructure evolution and abrasive wear behavior of D2 steel [J]. Wear, 2015, 328-329: 206
[4] Hamidzadeh M A, Meratian M, Saatchi A.Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel[J]. Mater. Sci. Eng., 2013, 571A: 193
[5] Park J S, Lee M G, Cho Y J, et al.Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process[J]. Met. Mater. Int., 2016, 22: 143
[6] Bombac D, Fazarinc M, Podder A S, et al.Study of carbide evolution during thermo-mechanical processing of AISI D2 tool steel[J]. J. Mater. Eng. Perform., 2013, 22: 742
[7] Kheirandish S.Effect of Ti and Nb on the formation of carbides and the mechanical properties in as-cast AISI-M7 high-speed steel[J]. ISIJ Int., 2001, 41: 1502
[8] Sawamoto A, Ogi K, Matsuda K.Solidification structures of Fe-C-Cr-(V-N b-W) alloys[J]. Trans. Am. Found. Soc., 1986, 94: 403
[9] Zhang J H, Li D J, Jia J, et al.Study on the structure and properties of a modified high-chromium cast iron[J]. Foundry, 1993, (8): 7张景辉, 李大军, 贾均等. 变质高铬铸铁组织与性能的研究[J]. 铸造, 1993, (8): 7
[10] Sun X M, Yang H.Influence of K/Na modificator & heat treatment on structure and performance of high chromium cast iron[J]. Hot Working Technology, 2007, 36(9): 30孙晓敏, 杨华. K/Na变质剂及热处理对高铬铸铁组织性能的影响[J]. 热加工工艺, 2007, 36(9): 30
[11] Pan Y C, Yang H, Liu X F, et al.Effect of K/Na on microstructure of high-speed steel used for rolls[J]. Mater. Lett., 2004, 58: 1912
[12] Tabrett C P, Sare I R, Ghomashchi M R.Microstructure-property relationships in high chromium white iron alloys[J]. Int. Mater. Rev., 1996, 41: 59
[13] The State Bureau of Quality and Technical Supervision . GB/T 1299-2000 Alloy tool steels [S]. Beijing: Standards Press of China, 2004国家质量技术监督局. GB/T 1299-2000 合金工具钢 [S]. 北京: 中国标准出版社, 2004
[14] Gao Y, Yang J Y, Wu C, et al.Effect of alloying elements in low alloy steel on corrosion and stability of matrix[J]. J. Shenyang Norm. Univ.(Nat. Sci. Ed.), 2011, 29: 510高岩, 杨靖瑜, 吴闯等. 低合金钢中合金元素对基体的作用及性能影响[J]. 沈阳师范大学学报(自然科学版), 2011, 29: 510
[15] Li Y J, Jiang Q C, Zhao Y G, et al.A dynamic study on the spheroidizing of eutectic carbide in the modified M2 steel[J]. Acta Metall. Sin., 1999, 35: 207李彦军, 姜启川, 赵宇光等. 变质M2高速钢中共晶碳化物加热团球化的动力学研究[J]. 金属学报, 1999, 35: 207
[16] Chen L L, Zhou X F, Fang F, et al.Effect of vanadium content on microstructure and properties of AISI D2 die steel[J]. Trans. Mater. Heat Treat., 2017, 38(1): 71陈雷雷, 周雪峰, 方峰等. V含量对D2钢组织与性能的影响[J]. 材料热处理学报, 2017, 38(1): 71
[17] Mao W W, Ning A G, Guo H J.Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel[J]. Int. J. Miner., Metall., Mater., 2016, 23: 1056
[18] Kwon H, Lee K B, Yang H R, et al.Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr[J]. Metall. Mater. Trans., 1997, 28A: 775
[19] Ning A G, Mao W W, Chen X C, et al.Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering[J]. Metals, 2017, 7: 70
[20] Oikawa T, Zhang J J, Enomoto M, et al.Influence of carbide particles on the grain growth of ferrite in an Fe-0.1C-0.09V alloy[J]. ISIJ Int., 2013, 53: 1245
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.