Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (4): 241-246    DOI: 10.11901/1005.3093.2017.421
  研究论文 本期目录 | 过刊浏览 |
基于动能耗散的双层铝板结构的高速撞击防护性能
管公顺1(), 戴训洋1, 管贺诗2
1 哈尔滨工业大学航天学院航天工程系 哈尔滨 150080
2 哈尔滨工业大学电气工程及自动化学院 哈尔滨 150080
Protection Performance of Double-wall Structure of Al-plate Subjected to Impact Effect of High Velocity Projectiles Based on Kinetic Energy Dissipation
Gongshun GUAN1(), Xunyang DAI1, Heshi GUAN2
1 Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150080, China
2 School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150080, China;
引用本文:

管公顺, 戴训洋, 管贺诗. 基于动能耗散的双层铝板结构的高速撞击防护性能[J]. 材料研究学报, 2018, 32(4): 241-246.
Gongshun GUAN, Xunyang DAI, Heshi GUAN. Protection Performance of Double-wall Structure of Al-plate Subjected to Impact Effect of High Velocity Projectiles Based on Kinetic Energy Dissipation[J]. Chinese Journal of Materials Research, 2018, 32(4): 241-246.

全文: PDF(800 KB)   HTML
摘要: 

通过铝球弹丸高速撞击单层铝板和双层铝板结构的动能耗散特性分析,在弹丸未破碎和已破碎两种撞击条件下,基于单层铝板撞击失效临界动能研究了双层铝板结构的高速撞击防护性能,并针对典型铝板防护结构的高速撞击防护性能评估结果进行了实验验证。结果表明,当铝球弹丸高速正撞击一定厚度的单层铝板时,铝板发生穿孔失效时的临界撞击动能近似为常数。当铝球弹丸高速正撞击双层铝板结构时弹丸击穿前板后的剩余动能,表现为弹丸初始撞击动能的比例耗散。在弹丸破碎段撞击速度区间,使双层铝板结构后板发生穿孔失效的弹丸直径越大,在弹丸击穿前板后的撞击后板有效动能中次生小碎片动能所占的比例越大。

关键词 金属材料双层铝板结构高速撞击临界撞击动能防护性能    
Abstract

By analyzing characteristics of the kinetic energy consumption of single Al-plate and double-wall structure of Al-plate, which were just subjected to dynamic impact effect of an Al-sphere, the protection performance of the double-wall structure against the impact effect of high velocity projectiles is investigated in terms of the critical impact kinetic energy for the failure of the single Al-plate by the impact conditions that the projectile sphere was broken or not when it hit. Meanwhile, the experimental verification of the protection performance of the typical protective structures is carried out. Results show that the critical impact kinetic energy causing the single Al-plate to failure is approximately constant for a certain thickness of the plates. After penetrating the first wall, the residual kinetic energy of the projectile is proportionally reduced from the initial impact kinetic energy for the case of double-wall structure of Al-plate. In the range of impact velocities corresponding to the occurrence of shot fragments, the greater in diameter of the subsequent projectile fragment might cause the perforation failure of the rear wall of the double-wall structure of Al-plate, thus which should possessed the greater proportion of the sum residual kinetic energy of the total fragments in the secondary debris cloud.

Key wordsmetallic materials    double-wall structure    high velocity impact    critical kinetic energy    protection performance
收稿日期: 2017-07-08     
基金资助:资助项目 国家自然科学基金(11172083)
作者简介: 管公顺,男,1969年生,教授
图1  剩余速度与撞击速度的关系
dp
/mm
tb
/mm
ν0
/km·s-1
νr1
/km·s-1
νr2
/km·s-1
δr
/%
6.35 1.27 0.84 0.77 0.76 -1.30
6.35 1.27 2.61 2.44 2.36 -3.28
6.35 1.27 0.85 0.77 0.77 0
6.35 1.27 2.62 2.45 2.37 -3.27
9.53 1.27 2.39 2.31 2.24 -3.03
表1  剩余速度计算值与实验结果[11]比较
dp
/mm
νc1
/km·s-1
νc2
/km·s-1
δc
/%
3.18 2.31 2.39 3.46
3.97 1.59 1.61 1.26
4.76 1.22 1.19 -2.46
表2  撞击极限速度计算值与实验结果比较
图2  弹道段撞击速度区间的弹丸直径与撞击极限速度的关系
dp/mm νc/km·s-1 Eb1/J δb1/% Eb2/J δb2/%
3.18 3.50 35.14 -43.75 64.85 3.81
3.97 4.68 33.94 -45.67 61.69 -1.25
4.76 5.75 34.50 -44.77 62.68 0.34
表3  撞击后板的临界动能预测值
图3  破碎段撞击速度区间的撞击后板有效动能与撞击速度的关系
图4  破碎段撞击速度区间的小碎片群动能在撞击后板有效动能中所占比例与撞击速度的关系
[1] Zhu Y L.Current space debris environment[J]. Chin. Space Sci. Technol., 1996, (6): 19(朱毅麟. 空间碎片环境近况[J]. 中国空间科学技术, 1996, (6): 19)
[2] Klinkrad H.Collision risk analysis for low Earth orbits[J]. Adv. Space Res., 1993, 13: 177
[3] Guan G S, Li H J, Liu J H, et al.Investigation into damage of woven stuffed shield impacted by high-velocity nonmetallic projectile[J]. Chin. J. Mater. Res., 2016, 30: 329(管公顺, 李航杰, 刘家赫等. 非金属弹丸高速撞击编织物填充式结构的损伤[J]. 材料研究学报, 2016, 30: 329)
[4] Miller J E, Bohl W E, Christiansen E L, et al.Ballistic performance of porous-ceramic, thermal protection systems[J]. Int. J. Impact Eng., 2013, 56: 40
[5] Christiansen E L, Crews J I, Williamsen J E, et al.Enhanced meteoroid and orbital debris shielding[J]. Int. J. Impact Eng., 1995, 17: 217
[6] Piekutowski A J, Poormon K L, Christiansen E L, et al.Performance of Whipple shields at impact velocities above 9km/s[J]. Int. J. Impact Eng., 2011, 38: 495
[7] Christiansen E L, Kerr J H.Ballistic limit equations for spacecraft shielding[J]. Int. J. Impact Eng., 2001, 26: 93
[8] Ha Y, Guan G S, Chi R Q, et al.Investigation of residual velocity of aluminum projectiles at hypervelocity impact on woven of basalt fiber [J]. Chin. J. High Press. Phys., 2012, 26: 273(哈跃, 管公顺, 迟润强等. 铝合金弹丸超高速撞击玄武岩纤维布剩余速度分析 [J]. 高压物理学报, 2012, 26: 273)
[9] Cour-Palais B G. Hypervelocity impact in metals, glass and composites[J]. Int. J. Impact Eng., 1987, 5: 221
[10] Ding L, Li C, Pang B J, et al.Ballistic limit equations in ballistic and shatter regions[J]. Int. J. Impact Eng., 2008, 35: 1490
[11] Ding L.Study of ballistic limit of dual-wall shielding structures against space debris [D]. Harbin: Harbin Institute of Technology, 2008.(丁莉. 空间碎片双层板防护结构撞击极限研究 [D]. 哈尔滨, 哈尔滨工业大学, 2008)
[12] Guan G S, Pang B J, Zhang W, et al.Crater distribution on the rear wall of AL-Whipple shield by hypervelocity impacts of AL-spheres[J]. Int. J. Impact Eng., 2008, 35: 1541
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.