Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 333-340    DOI: 10.11901/1005.3093.2017.377
  研究论文 本期目录 | 过刊浏览 |
Ti-5Al-2.5Sn ELI粉末合金的力学性能
郭瑞鹏1,2, 张静3, 徐磊1(), 雷家峰1, 刘羽寅1, 杨锐1
1 中国科学院金属研究所 沈阳 110016
2 东北大学材料科学与工程学院 沈阳 110819
3 北京航天动力研究所 北京 100076
Mechanical Properties of Ti-5Al-2.5Sn ELI Powder Compacts
Ruipeng GUO1,2, Jing ZHANG3, Lei XU1(), Jiafeng LEI1, Yuyin LIU1, Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 Beijing Aerospace Propulsion Institute, Beijing 100076, China
引用本文:

郭瑞鹏, 张静, 徐磊, 雷家峰, 刘羽寅, 杨锐. Ti-5Al-2.5Sn ELI粉末合金的力学性能[J]. 材料研究学报, 2018, 32(5): 333-340.
Ruipeng GUO, Jing ZHANG, Lei XU, Jiafeng LEI, Yuyin LIU, Rui YANG. Mechanical Properties of Ti-5Al-2.5Sn ELI Powder Compacts[J]. Chinese Journal of Materials Research, 2018, 32(5): 333-340.

全文: PDF(4202 KB)   HTML
摘要: 

用预合金粉末热等静压工艺制备全致密的Ti-5Al-2.5Sn ELI粉末合金,研究了粉末粒度组成、真空脱气处理和热处理等工艺因素对Ti-5Al-2.5Sn ELI粉末合金显微组织和力学性能的影响。结果表明,全粒度预合金粉末的氧含量和空心粉比例具有良好的匹配, 但是粉末粒度偏析使空心粉聚集进而降低粉末合金的低温拉伸性能。钛合金粉末的真空脱气温度不宜超过其最高服役温度,Ti-5Al-2.5Sn ELI粉末合金的退火处理温度不宜高于800℃。提高退火温度到两相区则使粉末合金的显微组织发生明显的粗化,粉末合金内部的微量气孔迅速长大形成热致孔洞。优化过程工艺参数和有限元仿真可制备出典型的Ti-5Al-2.5Sn ELI粉末冶金叶轮零件,其本体力学性能达到锻造合金的水平。

关键词 金属材料粉末冶金热等静压Ti-5Al-2.5Sn ELI合金叶轮结构有限元仿真    
Abstract

The Ti-5Al-2.5Sn with extra-low interstitial (ELI) powder compacts were fabricated by hot isostatic pressing (HIPing) via a pre-alloyed approach. The effect of powder pre-treatment and heat treatment of powder compacts on the microstructure and mechanical properties of Ti-5Al-2.5Sn ELI alloy are investigated. Results show that the best balance of oxygen content and fraction of hollow powder can be obtained for the powder with full size range. However, the particle size segregation of the pre-alloyed powder, which should be avoided during the powder filling, will degrade the tensile properties of the alloy at cryogenic temperature due to the gathering of gas bubble. The degassing temperature of titanium alloy-powder should be below the limitation of their service temperature, i.e. 400oC in this study. When the powder compact is annealed at (α+β) phase region, the microstructure coarsens significantly and the thermal induced porosity will emerge due to the rapid growth and expansion of the residual micro-pores. The suggested annealing temperature of powder compact is below 800oC. Finite element modeling (FEM) was used to predict the shrinkage of the encapsulated powder and optimize the tooling design. Based on FEM results, impellers of the Ti-5Al-2.5Sn ELI powder alloy have been successfully fabricated through HIPing route. The mechanical properties of powder metallurgy impeller are close to those of wrought materials.

Key wordsmetallic materials    powder metallurgy    hot isostatic pressing    Ti-5Al-2.5Sn ELI alloy    impeller structure    finite element analysis
收稿日期: 2017-06-20     
作者简介:

作者简介 郭瑞鹏,男,1990年生,博士生

图1  Ti-5Al-2.5Sn ELI预合金粉末的粒度分布和不同粒度区间粉末的空心粉比例及氧含量
图2  全粒度Ti-5Al-2.5Sn ELI粉末热等静压成型坯料的显微组织和Micro-CT像
图3  Ti-5Al-2.5Sn ELI预合金粉末在包套不同位置处的粒度分布
图4  包套/模具设计示意图
T/oC Position σb / MPa δ / %
-253 Top-1 1395 10.8
Top-2 1455 19.6
23 Top 785 14.5
表1  Ti-5Al-2.5Sn ELI粉末长时震动填充后成型粉末坯料的拉伸性能
图5  包套上部Ti-5Al-2.5Sn ELI粉末合金的断口形貌
图6  Ti-5Al-2.5Sn ELI预合金粉末在升温过程中的红外光谱图
图7  低碳钢大气腐蚀产物的XRD图
Samples σb / MPa σs / MPa δ / %
Degassed 819 762 15.5
Non-degassed 821 763 14.0
表2  脱气和不脱气处理后获得Ti-5Al-2.5Sn ELI粉末合金的室温拉伸性能
图8  不同退火制度下Ti-5Al-2.5Sn ELI粉末合金的OM像
图9  热等静压前后粉末坯料二维对称截面的模拟结果
图10  Ti-5Al-2.5Sn ELI粉末冶金叶轮实物图
Position Actual
size/mm
Designed
size/mm
Relative
error/%
I 14.88 15 0.8
II 42.28 42 0.67
III 5.07 5 1.4
IV 64.57 64 0.9
表3  粉末冶金叶轮关键部位尺寸和设计尺寸对比
Sample 20℃ -253℃
σb/MPa δ/% αKU2/kJ·m-2 KIC/MPa·m0.5 σb/MPa δ/%
Impeller 805 15.5 620 103 1440 18
Wroughta 826 14.6 600 115 1460 17.6
表4  Ti-5Al-2.5Sn ELI粉末合金的力学性能
[1] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51(2): 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129)
[2] Guo R, Xu L, Wu J, et al.Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response[J]. Mater. Sci. Eng. A, 2015, 639: 327
[3] Banerjee D, Williams J C, Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
[4] Williams J C, Starke E A.Progress in structural materials for aerospace systems[J]. Acta Mater., 2003, 51: 5775
[5] Guo R P, Xu L, Bai C G, et al.Effect of can design on tensile properties of typical powder metallurgy titanium alloys[J]. Chin. J. Nonferrous Met., 2014, 24(8): 2051(郭瑞鹏, 徐磊, 柏春光等. 包套设计对典型钛合金粉末合金拉伸性能的影响[J]. 中国有色金属学报, 2014, 24(8): 2051)
[6] Zhang K, Mei J, Wain N, et al.Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples[J]. Metall. Mater. Trans. A, 2010, 41: 1033
[7] Xu L, Guo R P, Bai C G, et al.Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. J. Mater. Sci. Technol., 2014, 30(12): 1289
[8] Wu J, Xu L, Lu Z G, et al.Microstructure design and heat response of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2015, 31: 1251
[9] Wang J W.Study on hot isostatic pressing near net shaping technology of difficult processing materials and their mechanical properties [D]. Wuhan: Huazhong University of Science and Technology, 2012(王基维. 难加工材料热等静压近净成形工艺基础及零件性能研究 [D]. 武汉: 华中科技大学, 2012)
[10] Baccino R, Moret F, Pellerin F, et al.High performance and high complexity net shape parts for gas turbines: the ISOPREC? powder metallurgy process[J]. Mater. Des., 2000, 21: 345
[11] Yuan W X, Mei J, Samarov V, et al.Computer modelling and tooling design for near net shaped components using hot isostatic pressing[J]. J. Mater. Process. Technol., 2007, 182: 39
[12] Froes F H, Mashl S J, Moxson V S, et al.The technologies of titanium powder metallurgy[J]. JOM, 2004, 55: 81
[13] Wang H T, Fang Z Z, Sun P.A critical review of mechanical properties of powder metallurgy titanium[J]. Inter. J. Powder Metall., 2010, 46(5): 45
[14] C. Cai, B. Song, P. Xue, et al.A novel nearα-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties[J]. Mater. Des., 2016, 106: 371
[15] Qiu C L, Attallah M M, Wu X H, et al.Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder[J]. Mater. Sci. Eng. A, 2013, 564: 176
[16] Cai C, Song B, Xue P, et al.Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties[J]. J. Alloy. Compd., 2016, 686: 55
[17] Cao L, Wu X, Zhu S, et al.The effect of HIPping pressure on phase transformations in Ti-5Al-5Mo-5V-3Cr[J]. Mater. Sci. Eng. A, 2014, 598: 207
[18] Guo R P, Xu Lei, Cheng W X, et al.Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy[J]. Acta Metall. Sin., 2016, 52: 842(郭瑞鹏, 徐磊, 程文祥等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响[J]. 金属学报, 2016, 52: 842)
[19] Rabin B H, Smolik G R, Korth G E.Characterization of entrapped gases in rapidly solidified powders[J]. Mater. Sci. Eng. A, 1990, 124: 1
[20] Guo R, Xu L, Zong B Y, et al.Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of hiped powder compacts[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30(8): 735
[21] Cheng W X.Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013(程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[22] Guo R P, Xu L, Zong B Y, et al.Preparation and ring rolling processing of large size Ti-6Al-4V powder compact[J]. Mater. Des., 2016, 99: 341
[23] Lee Y T, Schurmann H, Grundhoff K J, et al.Effect of degassing treatment on microstructure and mechanical properties of P/M Ti-6Al-4V[J]. Inter. J. Powder Metall., 1990, 22: 11
[24] Li S Q.The preparation and microstructure research of rapidly solidified powder metallurgy Ti-60 alloy [D]. Shenyang: Institute of Metal Research, Chinese Academic of Sciences, 2010(李少强. 快速凝固粉末冶金Ti-60钛合金的制备及显微组织研究 [D]. 沈阳: 中国科学院金属研究所, 2010)
[25] Liu G C.Metal powders densification under hot isostatic pressing: Numerical simulation and experiment [D]. Wuhan: Huazhong University of Science and Technology, 2011(刘国承. 金属粉末热等静压致密化数值模拟与试验研究 [D]. 武汉: 华中科技大学, 2011)
[26] Atkins P, Paula De J. Physical Chemistry, Volume 1: Thermodynamics and kinetics (8th ed.)[M]. New York: W H Freeman & Co(Sd), 2006
[27] Lütjering G, Williams J C.Titanium[M]. Berlin: Springer, 2007
[28] Tammas-Williams S, Withers P J, Todd I, et al.Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components[J]. Scripta Mater., 2016, 122: 72
[29] Xu L, Guo R P, Chen Z Y, et al.Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55alloys[J]. Chin. J. Mater. Res., 2016, 30(1): 23(徐磊, 郭瑞鹏, 陈志勇等. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型[J]. 材料研究学报, 2016, 30(1): 23)
[30] Stone Van R H, Low J R, Shannon J L. Investigation of the fracture mechanism of Ti-5AI-2.5Sn at cryogenic temperatures[J]. Metall. Trans. A, 1978, 9: 539
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.