Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 607-615    DOI: 10.11901/1005.3093.2017.372
  研究论文 本期目录 | 过刊浏览 |
硅酸钠溶液的模数对Zn-5%Al镀层上硅酸盐转化膜的影响
许璐, 车淳山(), 孔纲, 王彦启, 曹祖军
华南理工大学材料科学与工程学院 广州 510640
Effect of Different Molar Ratio of SiO2 to Na2O on Silicate Conversion Film Prepared on Hot-dip Zn-5%Al Coating
Lu XU, Chunshan CHE(), Gang KONG, Yanqi WANG, Zujun CAO
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

许璐, 车淳山, 孔纲, 王彦启, 曹祖军. 硅酸钠溶液的模数对Zn-5%Al镀层上硅酸盐转化膜的影响[J]. 材料研究学报, 2018, 32(8): 607-615.
Lu XU, Chunshan CHE, Gang KONG, Yanqi WANG, Zujun CAO. Effect of Different Molar Ratio of SiO2 to Na2O on Silicate Conversion Film Prepared on Hot-dip Zn-5%Al Coating[J]. Chinese Journal of Materials Research, 2018, 32(8): 607-615.

全文: PDF(4269 KB)   HTML
摘要: 

使用扫描电子显微镜(SEM)和能谱仪(EDS)、傅里叶变换红外吸收光谱 (FT-IR)、X射线光电子能谱 (XPS)等手段研究了经不同模数(SiO2:Na2O=2.0,3.0,3.5,4.0,4.5)硅酸钠溶液处理的热浸Zn-5%Al镀层表面硅酸盐转化膜的形貌和结构,并根据电化学交流阻抗(EIS)研究了膜层的耐蚀性。结果表明:与未处理的热浸镀Zn-5%Al试样相比,钝化后的试样耐蚀性有较大的提高,且模数为4.0时的膜层透明,表面均匀平整,膜层阻抗达到204.22 kΩ? cm2,耐蚀性最高;而模数为2.0时的膜层表面有较多的裂纹,耐蚀性最低。硅酸盐转化膜主要由硅酸锌、铝硅酸盐和二氧化硅、铝氧化物/氢氧化物、锌氧化物/氢氧化物组成,根据膜层分析对Zn-5%Al镀层硅酸盐转化膜的成膜机理进行了讨论。

关键词 材料表面与界面热浸镀Zn-5%Al转化膜硅酸盐耐蚀性能    
Abstract

Silicate conversion film was prepared on Zn-5%Al hot dip galvanized Q235 steel by dipping in sodium silicate solution with different molar ratio of SiO2 to Na2O in the range of 1.0-4.5. The surface morphology and microstructure, as well as the corrosion resistance of the conversion film were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS), transmission infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), as well as electrochemical impedance spectroscopy (EIS). The results show that in the solution of molar ratio 4.0, the prepared film is uniform and smooth with the highest electrochemical impedance up to 204.22 kΩ?cm2. However, the film formed in the solution of molar ratio 2.0 exhibits a large number of cracks, which presents the lowest corrosion performance. The silicate conversion film consists of zinc silicate, aluminosilicate, silicon dioxide, aluminum oxide/hydroxide and zinc oxide/hydroxide. Finally, the formation mechanism of silicate conversion film on the Zn-5%Al hot dip galvanized steel was also discussed.

Key wordssurface and interface in the materials    hot-dip Zn-5%Al    conversion film    silicate    corrosion resistance
收稿日期: 2017-08-31     
ZTFLH:  TB304  
基金资助:资助项目 国家自然科学基金 (21573077,51373055),国际铅锌研究组织(ILZRO/IZA/CN201212)
作者简介:

作者简介 许 璐,女,1993年生,硕士

图1  Zn-5%Al镀层和模数为2.0和4.0的硅酸盐转化膜的SEM形貌
Analytic area Morphology Zn/% Al/% O/% Si/%
1 swell 72.11 4.20 18.49 5.20
2 the edge of crack 66.71 4.19 23.31 5.79
3 crack 90.58 3.79 4.31 1.32
4 flat 86.63 4.27 7.02 2.09
5 swell 85.84 5.23 7.37 1.56
6 flat 89.75 4.99 4.37 0.89
7 flat 91.20 4.28 4.52 -
表1  图1中各点的微区EDS分析结果
图2  试样M2和M4的XPS全谱图
图3  M2试样表面Na1s,O1s,Si2p以及M4试样表面Na1s,O1s,Si2p,Al2p,Zn2p的XPS高分辨谱图
图4  试样M2和M4的傅里叶变换红外吸收光谱
图5  Zn-5%Al与不同模数比的硅酸盐膜试样在5%NaCl溶液中的电化学交流阻抗谱
图6  电化学交流阻抗谱的等效拟合电路
Sample Rs/kΩcm2 R1/kΩcm2 CPE1 R2/kΩcm2 CPE2
Y1/10-6Ω-1cm-2s-n n1 Y2/10-5Ω-1cm-2s-n n2
Zn-5%Al 1.16 0.49 8.13 0.88 4.66 46.71 0.60
M=2.0 0.72 0.34 77.18 0.75 1.36 24.31 0.69
M=3.0 0.42 8.45 17.58 0.84 16.28 6.36 0.69
M=3.5 1.16 32.38 6.13 0.91 45.19 2.80 0.82
M=4.0 5.38 204.22 6.61 0.91 - - -
M=4.5 15.49 0.96 5.86 0.66 9.42 42.90 0.61
表2  根据图6计算的Zn-5%Al及硅酸盐膜的等效元件的拟合参数
[1] Liang Y L, Wang Z B, Zhang J B, et al.Formation of interfacial compounds and the effects on stripping behaviors of a cold-sprayed Zn-Al coating on interstitial-free steel[J]. Appl. Surf. Sci., 2015, 340: 89
[2] Liu Z, Li R, Jiang R, et al.Effects of Al addition on the structure and mechanical properties of Zn alloys[J]. J. Alloys Compd., 2016, 687:885.
[3] Wang Y Q, Kong G, Che C S.Corrosion behavior of Zn-Al alloys in saturated Ca(OH)2 solution[J]. Corros. Sci., 2016, 112: 679
[4] Prosek T, Hagstr?m J, Dan P, et al.Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability[J]. Corros. Sci., 2016, 110: 71
[5] Shen T H, Tsai C Y, Lin C S.Growth behavior and properties of Zn-Al pack cementation coatings on carbon steels[J]. Surf. Coat. Technol., 2016, 306: 455
[6] Cao Z J, Kong G, Che C S.Effect of Nd addition on microstructure and corrosion resistance of Zn-5%Al alloy[J]. Chin. J. Nonferrous. Met., 2017(01): 24(曹祖军, 孔纲, 车淳山. 稀土Nd对Zn-5%Al合金显微组织和耐蚀性的影响[J].中国有色金属学报, 2017(01): 24)
[7] Kato T, Nunome K, Kaneko K, et al.Formation of the ζ phase at an interface between an Fe substrate and a molten 0.2 mass% Al-Zn during galvannealing[J]. Acta Mater., 2000, 48(9): 2257
[8] Elechower M, Kli J, Augustyn E, et al.The Microstructure of Annealed Galfan Coating on Steel Substrate[J]. Arch. Metall. Mater., 2012, 57(2): 517
[9] Wu X X, Kong G, Sun Z W, et al.Preparation and corrosion performance of lanthanum nitrate conversion coating on hot-dip galfan steel[J]. Chin. J. Mater. Res., 2016(04): 269(吴晓晓, 孔纲, 孙子文等.热浸镀Galfan表面镧盐转化膜的生长和耐腐蚀性能的研究[J].材料研究学报, 2016(04): 269)
[10] Golabadi M, Aliofkhazraei M, Toorani M, et al.Corrosion and cathodic disbondment resistance of epoxy coating on zinc phosphate conversion coating containing Ni2+ and Co2+ [J]. J. Ind. and Eng.Chem., and Eng. Chem., 2016, 47: 154
[11] Zhang S H, Kong G, Sun Z W, et al.Effect of formulation of silica-based solution on corrosion resistance of silicate coating on hot-dip galvanized steel[J]. Surf. Interface Anal., 2016, 48(3): 132
[12] Ramanauskas R, Gir?ien? O, Gudavi?iūt? L, et al.The interaction of phosphate coatings on a carbon steel surface with a sodium nitrite and silicate solution[J]. Appl. Surf. Sci., 2015, 327: 131
[13] Xu Q Y, Wang H X, Jiang R.Formation and corrosion resistance of titanium containing conversion film on hot-dip galvanized steel[J]. Chin. J. Mater. Res., 2014(07): 521(许乔瑜, 王海霞, 姜瑞. 热浸镀锌层钛盐转化膜的制备和耐蚀性能[J]. 材料研究学报, 2014(07): 521)
[14] Pommiers S, Frayret J, Castetbon A, et al.Alternative conversion coatings to chromate for the protection of magnesium alloys[J]. Corros. Sci., 2014, 84(8): 135
[15] Gupta R K, Mensah-Darkwa K, Kumar D.Effect of Post Heat Treatment on Corrosion Resistance of Phytic Acid Conversion Coated Magnesium[J]. J. Mater. Sci., Technol. 2013, 29(2): 180
[16] Hamlaoui Y, Tifouti L, Pedraza F.Corrosion behaviour of molybdate-phosphate-silicate coatings on galvanized steel[J]. Corros. Sci., 2009, 51(10): 2455
[17] Jiang L, Wolpers M, Volovitch P, et al.An atomic emission spectroelectrochemical study of passive film formation and dissolution on galvanized steel treated with silicate conversion coatings[J]. Surf. Coat. Technol., 2012, 206(13): 3151
[18] Yuan M, Lu J, Kong G, et al.Effect of silicate anion distribution in sodium silicate solution on silicate conversion coatings of hot-dip galvanized steels[J]. Surf. Coat. Technol., 2011, 205(19): 4466
[19] Yuan M, Lu J, Kong G.Effect of SiO2:Na2O molar ratio of sodium silicate on the corrosion resistance of silicate conversion coatings[J]. Surf. Coat. Technol., 2010, 204(8): 1229
[20] Yuan M, Lu J, Kong G, et al.Self healing ability of silicate conversion coatings on hot dip galvanized steels[J]. Surf. Coat. Technol., 2011, 205(19): 4507
[21] Kazemi M, Danaee I, Zaarei D.Deposition and corrosion behavior of silicate conversion coatings on aluminum alloy 2024[J]. Materialwiss. Werkstofftech., 2014, 45(7): 574
[22] Kazemi M, Danaee I, Zaarei D.The effect of pre-anodizing on corrosion behavior of silicate conversion coating on AA2024[J]. Mater. Chem. Phys., 2014, 148(1-2): 223
[23] Kim H, Jang J.Infrared spectroscopic study of SiOx film formation and decomposition of vinyl silane derivative by heat treatment. II. on copper surface[J]. J. Appl. Polym. Sci., 1998, 68: 785
[24] Labbe J P, Pagetti J.Study of an inhibiting aluminosilicate interface by infrared reflection spectroscopy[J]. Thin Solid Films., 1981, 82(1): 113
[25] Yuan M R.Silicate conversion coatings on hot-dip galvanized steel [D]. South China University of Technology, 2011(袁美蓉. 热浸镀锌层表面硅酸盐转化膜的研究[D]. 华南理工大学, 2011)
[26] Wu Z F, Li S J.Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chin. J. spectrosc. Lab., 2012, 29(4): 2172(武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4): 2172)
[27] Gaggiano R, Moriamé P, Biesemans M, et al.Mechanism of formation of silicate thin films on porous anodic alumina[J]. Surf. Coat. Technol., 2011, 205(21-22): 5210
[28] Beverskog B, Puigdomenech I.Revised pourbaix diagrams for zinc at 25-300℃[J]. Corros Sci., 1997, 39(1): 107
[29] Yang Z H, Xu N, Qiu Z X.Measurement of aluminum corrosive potential-pH and the polarization curve[J].J. Northeast. Univ., 2000(04): 401(杨振海, 徐宁, 邱竹贤. 铝的电位-pH图及铝腐蚀曲线的测定[J].东北大学学报, 2000(04): 401)
[30] Xu H,Van Deventer J S J. The geopolymerisation of alumino-silicate minerals[J]. Int. J. Miner. Process., 2000, 59(3): 247
[31] Swaddle T W, Salerno J, Tregloan P A.Aqueous aluminates, silicates, and aluminosilicates[J]. Chem. Soc. Rev., 1994, 23(5): 319
[32] Vu T N, Volovitch P, Ogle K.The effect of pH on the selective dissolution of Zn and Al from Zn-Al coatings on steel[J]. Corros Sci., 2013, 67: 42
[33] Nordstr?m J, Sundblom A, Jensen G V, et al.Silica/alkali ratio dependence of the microscopic structure of sodium silicate solutions[J]. J. Colloid Interface Sci., 2013, 397: 9
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 汪鹏, 卢希龙, 曹春娥, 陈云霞, 沈华荣, 张旭. 成核-生长型液-液分相对无铅低温熔剂性能的影响[J]. 材料研究学报, 2021, 35(9): 657-666.
[15] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.