Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 599-606    DOI: 10.11901/1005.3093.2017.353
  研究论文 本期目录 | 过刊浏览 |
基于碳酸镁模板的氮掺杂多孔炭的制备及其电化学性能
范景彪1, 李志伟1, 骆建敏2, 黄艳1, 陈楠楠1, 米红宇1()
1 新疆大学 新疆维吾尔自治区洁净煤转化与化工过程重点实验室 乌鲁木齐 830046
2 新疆大学 理化测试中心 乌鲁木齐 830046
Preparation and Electrochemical Performance of Nitrogen-Doped Porous Carbon with MgCO3 as Template
Jingbiao FAN1, Zhiwei LI1, Jianmin LUO2, Yan HUANG1, Nannan CHEN1(), Hongyu MI1
1 Xinjiang Uygur Autonomous Region Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang University, Urumqi 830046, China
2 Physical and Chemical Detecting Center, Xinjiang University, Urumqi 830046, China
引用本文:

范景彪, 李志伟, 骆建敏, 黄艳, 陈楠楠, 米红宇. 基于碳酸镁模板的氮掺杂多孔炭的制备及其电化学性能[J]. 材料研究学报, 2018, 32(8): 599-606.
Jingbiao FAN, Zhiwei LI, Jianmin LUO, Yan HUANG, Nannan CHEN, Hongyu MI. Preparation and Electrochemical Performance of Nitrogen-Doped Porous Carbon with MgCO3 as Template[J]. Chinese Journal of Materials Research, 2018, 32(8): 599-606.

全文: PDF(4697 KB)   HTML
摘要: 

以碳酸镁为模板、聚苯胺为炭源、聚乙二醇为粘接剂,通过简单的炭化过程制得氮掺杂多孔炭(C2)。以聚苯胺直接炭化物(C1)作为对比样。使用扫描电镜、透射电镜、N2吸脱附、热重、红外光谱、拉曼光谱、X射线衍射谱、X光电子能谱等手段对样品进行了表征。结果表明,多孔的C2样品比表面积为249.8 m2/g,远比C1的(19.8 m2/g)高。C1和C2中的氮原子含量(原子分数)接近,分别为5.48%和4.8%。较高的比表面积和一定的氮掺杂使C2具有良好的电化学电容行为。在电流密度为1 A/g的条件下C2的比电容为268 F/g,经过8000圈的充放电循环(电流密度为4 A/g)表现出极好的电化学稳定性。

关键词 无机非金属材料多孔炭碳酸镁模板聚苯胺超级电容器    
Abstract

N-doped porous carbon (C2) was prepared by simple carbonization process with MgCO3 as template, synthesized polyaniline (PANI) as carbon source and polyethylene glycol (PEG) as binder. Meanwhile, PANI was directly carbonized to prepare (C1) for comparison. The morphology, structure and composition of the prepared porous carbon were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption, thermogravimetry, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. Results show that specific surface area of C2 is 249.8 m2/g, far higher than that of C1 (19.8 m2/g). The N-contents of the two porous carbons were similar i.e. 5.48% (C1) and 4.8% (C2), respectively. Both of the high specific surface area and certain amount of N-doping endowed C2 with good electrochemical capacitive properties. The specific capacitance of C2 is 268 F/g by current density of 1 A/g. Besides, the N-doped porous carbon (C2) exhibited excellent stability after 8000 cycles of charge-discharge by current density of 4 A/g.

Key wordsinorganic non-metallic materials    porous carbon    polyaniline    MgCO3 template    supercapacitor
收稿日期: 2017-08-31     
ZTFLH:  TQ127  
基金资助:资助项目 国家自然科学基金(21563029)
作者简介:

作者简介 范景彪,男,1991年生,硕士生

图1  样品C1和C2的N2吸脱附曲线和BJH孔径分布
Samples SBET
/m2g-1
Vtotal
/cm3g-1
Vmicro
/cm3g-1
Vmeso
/cm3g-1
Dap
/nm
C1 19.8 0.159 0.009 0.150 32
C2 249.8 1.055 0.108 0.947 16.9
表1  样品C1、C2的比表面积和孔结构参数
图2  PANI,C1和C2的SEM和TEM照片
图3  样品的热重曲线
图4  C1和C2的FTIR,XRD,Raman以及XPS谱图
Samples Elemental content of XPS N1s O1s
C N O N-6 N-5 N-Q N-O C=O C-O O=C-O
C1 89.04 5.48 5.48 25.36 38.72 32.73 3.19 13.13 40.00 46.87
C2 88.49 4.87 6.64 24.31 37.48 31.32 6.89 42.28 12.3 45.42
表2  XPS表面元素组成
图5  C1和C2的C1s、N1s和O1s高分辨谱图
图6  C2电极在不同扫描速率下的循环伏安曲线、在不同电流密度下的恒流充放电曲线、循环充放电和库伦效率曲线以及交流阻抗曲线(插图为高频区放大图)
[1] Li X, Hao C, Tang B, Wang Y, et al.Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites[J]. Nanoscale, 2017, 9(6): 2178
[2] Gonzalez A, Goikolea E, Andoni Barrena J, et al.Review on supercapacitors: technologies and materials[J]. Renew. Sust. Energ. Rev., 2016, 58: 1189
[3] Yu Z N, Tetard L, Zhai L, et al.Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energ. Environ. Sci., 2015, 8(3): 702
[4] Ye L; Liang Q H; Huang Z H, et al. A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range[J]. J Mater. Chem. A., 2015, 3(37): 18860
[5] Sheberla D, Bachman J C, Elias J S, et al.Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nat. Mater., 2016, 16(2): 220
[6] Shayeh,J S, Sadeghinia M, Siadat, S O R, et al. A novel route for electrosynthesis of CuCr2O4 nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors[J]. J. Colloid. Interf. Sci., 2017, 496(2017): 401
[7] He Z, Zhang G, Chen Y, et al.The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications[J]. J. Mater. Sci., 2017, 52(5): 2422
[8] Wang Q, Yan J, Fan Z.Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities[J]. Energ. Environ. Sci., 2016, 9(3): 729
[9] Ling Z, Wang Z, Zhang M, et al.Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Adv. Funct. Mater., 2016, 26(1): 111
[10] Presser V, Heon M, Gogotsi Y.Carbide-derived carbons from porous networks to nanotubes and graphene[J]. Adv. Funct. Mater., 2011, 21(5): 810
[11] Duan L Q, Ma Q S, Chen C H.Research progress of preparation of nanoscale porous carbon by CDC method[J]. J. Inorg. Mater., 2013, 28(10): 1051(段力群,马青松,陈朝辉. CDC法制备纳米多孔碳研究进展[J]. 无机材料学报, 2013, 28(10): 1051)
[12] Chang B, Zhang S, Sun L, et al.2D graphene-like hierarchically porous carbon nanosheets from a nano-MgO template and ZnCl2 activation: morphology, porosity and supercapacitance performance[J]. Rsc. Adv., 2016, 6(75): 71360
[13] Wang H, Sun X, Liu Z, et al.Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes[J]. Nanoscale, 2014, 6(12): 6577
[14] Ma C, Shi J, Song Y, et al.Preparation and capacitive properties of nitrogen-enriched hierarchical porous carbon[J]. Int. J. Electrochem Sci., 2012, 7(8):730
[15] Li M, Liu C, Cao H, et al.KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors[J]. J Mater. Chem. A, 2014, 2(36): 14844
[16] Zhang G, Song Y, Zhang H, et al.Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage[J]. Adv. Funct. Maters., 2016, 26(18): 3012
[17] Liu X, Li S, Mi R, et al.Porous structure design of carbon xerogels for advanced supercapacitor[J]. Appl. Energ., 2015, 153(2015): 32
[18] Wang S, Kaneko K.CO2-pressure swing activation for efficient production of highly porous carbons[J]. Carbon, 2015, 85: 245
[19] Li X, Li L, Wang X, et al.Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes[J]. Sci. Rep, 2017, 7(1): 1685
[20] Goldfarb J L, Dou G, Salari M, et al.Biomass-based fuels and activated carbon electrode materials: an integrated approach to green energy systems[J]. ACS Sustain Chem Eng, 2017, 5(4): 3046
[21] He X, Zhang H, Zhang H, et al.Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J. Mater. Chem. A, 2014, 2(46): 19633
[22] He X, Zhang N, Shao X, et al.A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chem. Eng. J, 2016, 297: 121
[23] He X, Li R, Qiu J, et al.Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50(13): 4911
[24] Chen A, Li Y, Yu Y, et al.Nitrogen-doped hollow carbon spheres for supercapacitors application[J]. J Mater. Sci., 2016, 688: 1
[25] Luo H, Chen Y Z, Wang B, et al.Nitrogen-self-doped mesoporous carbons synthesized by the direct carbonization of ferric ammonium citrate for high-performance supercapacitors[J]. J. Solid. State. Electr., 2017, 21(2): 515
[26] Peng Z, Xu L, Meng H, et al.Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors[J]. ACS Appl. Mater. Inter., 2016, 9(5): 4577
[27] Feng X M.Synthesis of polyaniline nanofiber and its application to the biosensor[J]. Funct. Mater, 2010, 41(7): 1250(冯晓苗. 聚苯胺纳米纤维的合成及其在生物传感器中的应用[J]. 功能材料, 2010, 41(7): 1250)
[28] Qin L Q, Liu Y B, Huang Z X, et al.Combustion behavior and flame retardation mechanism of epoxy resins blended with basic magnesium carbonate[J]. Journal of WuHan university of Technology, 2008, 30(4): 19(秦麟卿, 刘以波, 黄志雄等. 碱式碳酸镁阻燃环氧树脂的研究[J]. 武汉理工大学学报, 2008, 30(4): 19)
[29] Jin X M, Sun G H, Wang M W, et al.Research of porous carbons by MgO template and influence factors[J]. Guangzhou Chemical Industry, 2016, 44(8): 13(金香梅, 孙光辉, 王明伟等. MgO模板法制备多孔碳及其影响因素的研究[J]. 广州化工, 2016, 44(8): 13)
[30] Hong X, Zhang B, Murphy E, et al.Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors[J]. J Power Sources, 2017, 343: 60
[31] Senthilkumar S T, Senthilkumar B, Balaji S, et al.Preparation of activated carbon from sorghum pith, and its structural and electrochemical properties[J]. Mater. Res. Bull., 2011, 46(3): 413
[32] Ding Y, Zhang N, Zhang J, et al.The additive-free electrode based on the layered MnO2 nanoflowers/reduced graphene oxide film for high performance supercapacitor[J]. Ceram. Int., 2017, 43(7): 5374
[33] Reiche S, Blume R, Zhao X C, et al.Reactivity of mesoporous carbon against water-An in-situ XPS study[J]. Carbon, 2014, 77(10): 175
[34] Wei J S, Ding H, Wang Y G.Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks[J]. ACS Appl. Mater. Inter., 2015, 7(10): 5811
[35] Choudhury A, Kim J H, Mahapatra S S, et al.Nitrogen-enriched porous carbon nanofiber mat as efficient flexible electrode material for supercapacitors[J]. ACS Sustain. Chem. Eng., 2017, 5(3): 2109
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.