Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 591-598    DOI: 10.11901/1005.3093.2017.342
  研究论文 本期目录 | 过刊浏览 |
不同高径比固体浮力材料的单轴压缩变形机制和能量耗散特征
梅志远1, 周晓松2(), 吴梵1
1 海军工程大学舰船与海洋学院 武汉 430033
2 中国人民解放军军事科学院国防科技创新研究院 北京 100071
Deformation Mechanism and Energy Dissipation of Solid Buoyant Material with Different Ratio of Height to Diameter under Uniaxial Compression Loading
Zhiyuan MEI1, Xiaosong ZHOU2(), Fan WU1
1 College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
2 National Academy of Defense Science and Technology Innovation,Academy of Military Sciences PLA China, Beijing 100071, China
引用本文:

梅志远, 周晓松, 吴梵. 不同高径比固体浮力材料的单轴压缩变形机制和能量耗散特征[J]. 材料研究学报, 2018, 32(8): 591-598.
Zhiyuan MEI, Xiaosong ZHOU, Fan WU. Deformation Mechanism and Energy Dissipation of Solid Buoyant Material with Different Ratio of Height to Diameter under Uniaxial Compression Loading[J]. Chinese Journal of Materials Research, 2018, 32(8): 591-598.

全文: PDF(2162 KB)   HTML
摘要: 

将试验测试与数值模拟相结合,研究了不同高径比固体浮力材料在单轴压缩载荷作用下的变形机制和能量耗散特征。先使用MTS-45型万能材料试验机对五种不同高径比固体浮力材料试件进行单轴压缩试验,分析其力学响应特征和破坏模式;然后基于单轴压缩试验结果并使用ABAQUS有限元软件建立反映固体浮力材料宏观力学性能的数值分析模型,对比分析了不同高径比固体浮力材料在单轴压缩载荷作用下的变形演变机制和能量耗散历程。结果表明:固体浮力材料核心承载应力圆的扩展是压缩过程进入塑性平台阶段的一个标志,塑性平台阶段的变形特征以压缩膨胀为主。进入致密压实阶段后,随着高径比的增大试件变形由对称式双凹圆盘变形特征转变为非对称式滑移变形特征。高径比越小的固体浮力材料试件其破坏吸收的能量增加越快、峰值应力后的破坏越呈现出塑性剪切破坏特征。高径比越大,越呈现出压缩断裂破坏特征。

关键词 复合材料固体浮力材料高径比变形机制能量耗散    
Abstract

In order to understand the deformation mechanism and energy dissipation of solid buoyant material with different ratio of height to diameter under uniaxial compression loading, the desired experimental tests and numerical simulation were conducted. Firstly, the uniaxial compression test of solid buoyant material specimens with five different ratios of H to D is conducted by means of MTS-45 universal testing machine, while the mechanical response characteristics and failure modes are analyzed. Secondly,the simulation model of the solid buoyant material is proposed based on the results of uniaxial compression test and the macroscopic mechanical property of the solid buoyant material is described with ABAQUS finite element software. Results show that the bearing load stress circles of the solid buoyant material expand at the beginning of plateau stage and the dominant deformation mode is plastic compression during the plateau stage. As densification stage starts, the deformation mode transfers from symmetric biconcave disks to asymmetric slip deformation with the increasing ratio of H to D. The solid buoyant material is apt to shear failure, while the amount of absorbed energy of the failure process increases with the decreasing ratio of H to D, which presents plastic shear failure characteristics. On the contrary, with the increasing ratio of H to D, the material is apt to compression fracture failure.

Key wordscomposite    solid buoyant material    height to diameter ratio    deformation mechanism    energy dissipation
收稿日期: 2017-05-27     
ZTFLH:  TB332  
基金资助:资助项目 国家自然科学基金(51479205)
作者简介:

作者简介 梅志远,男,1973年生,教授

图1  不同高径比固体浮力材料试件的压缩响应特征曲线
图2  不同高径比固体浮力材料试件的压缩刚度和初始屈服强度变化曲线
图3  不同高径比固体浮力材料试件的破坏模式
图4  固体浮力材料的数值分析模型
Yield stress / MPa Plastic strain
18.181
19.437
0.000
0.083
19.427 0.175
20.206 0.276
21.941 0.389
25.190 0.515
31.170 0.661
42.918 0.830
表1  固体浮力材料弹塑性本构特征参数
图5  固体浮力材料的横向-轴向应变仿真试验结果对比
图6  固体浮力材料试件的变形仿真试验结果对比
Energy type Value/J Percentage/%
Total energy 255 100
Fricitional disspational energy 5 2.0
Viscous disspational energy 2 0.8
Kinetic energy 0.005 0.00002
Internal energy 243 95.3
Damage disspational energy 0 0
Plastic disspational energy 197 77.3
Creep disspational energy 0 0
Elastic strain energy 43 16.9
Artificial strain energy 3 1.2
表2  数值模型能量吸收分布
图7  数值模型能量耗散的组成
图8  不同高径比固体浮力材料的能量吸收曲线
[1] Lim J Y, Bart-Smit H H. Theoretical approach on the dynamic global buckling response of metallic corrugated core sandwich columns[J]. International Journal of Non-Linear Mechanics, 2014, 65: 14
[2] Yan L L, Yu B, Han B, et al.Compressive strength and energy absorption of sandwich panels with aluminum foam filled corrugated cores[J]. Composites Science and Technology, 2013, 86: 142
[3] Lu T J, He D P, Chen C Q, et al.The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517(卢天健, 何德坪, 陈常青等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517)
[4] Yan L L, Han B, Yu B, etal. Three-point bending of sandwich beams with aluminum foam-filled corrugated cores[J]. Materials & Design, 2014, 60: 510
[5] Jin F N, Chen H L, Zhao L, et al.Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores: Experiments[J]. Composite Structures, 2013, 98: 53
[6] Xu Z L.Elastic mechanics [M]. Beijing: Higher Education Press, 2006: 107-110(徐芝纶.弹性力学[M]. 北京: 高等教育出版社, 2006: 107-110)
[7] Biagi R, Bart-Smith H.In-plane column response of metallic corrugated core sandwich panels[J]. International Journal of Solids and Structures, 2012, 49(26): 3901
[8] Takano A.Buckling of thin and moderately thick anisotropic cylinders under combined torsion and axial compression[J]. Thin-Walled Structures, 2011, 49(2): 304
[9] ABAQUS Inc, Ltd. Abaqus Theory Manual. Version V 6.12[M]. Rhode Island: ABAQUS Inc, Ltd, 2012
[10] Ismail M S, Purbolaksono J, Andriyana A, et al.The use of initial imperfection approach in design process and buckling failure evaluation of axially compressed composite cylindrical shells[J]. Engineering Failure Analysis, 2015, 51: 20
[11] V. S. Deshpande, N. A. Fleck, “Isotropic constitutive models for metallic foams” [J]. Mechs. Phys. Solids. pp. 2000: 2139-2150
[12] Zhuang Z, You X C, Liao J H, et al.Finite Element Analysis and Application Based on ABAQUS [M]. Beijing: Tisinghua University Press, 2009: 219(庄茁, 由小川, 廖剑晖等. 基于ABAQUS的有限元分析和应用 [M]. 北京:清华大学出版社, 2009: 219)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 周章瑞, 吕培森, 赵国旗, 张剑, 赵云松, 刘丽荣. 两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.