Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 161-167    DOI: 10.11901/1005.3093.2017.339
  研究论文 本期目录 | 过刊浏览 |
FeCo/石墨烯的制备和吸波性能
褚海荣1, 陈平1(), 于祺2, 徐东卫1
1 大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024;
2 沈阳航空航天大学 辽宁省先进聚合物基复合材料重点实验室 沈阳 110136;
Preparation and Microwave Absorption Properties of FeCo/Graphene
Hairong CHU1, Ping CHEN1(), Qi YU2, Dongwei XU1
1 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
2 Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China;
引用本文:

褚海荣, 陈平, 于祺, 徐东卫. FeCo/石墨烯的制备和吸波性能[J]. 材料研究学报, 2018, 32(3): 161-167.
Hairong CHU, Ping CHEN, Qi YU, Dongwei XU. Preparation and Microwave Absorption Properties of FeCo/Graphene[J]. Chinese Journal of Materials Research, 2018, 32(3): 161-167.

全文: PDF(2415 KB)   HTML
摘要: 

用共沉淀和高温退火相结合的方法制备了晶态FeCo/石墨烯吸波粒子,使用XRD、FESEM和TEM等手段对其晶体结构和微观形貌进行了表征。结果表明,向石蜡中添加不同质量的FeCo/石墨烯吸波粒子可制备不同含量吸波粒子的复合材料。使用微波矢量网络分析仪对不同含量吸波粒子的复合材料的电磁参数的测试和不同厚度吸波性能的模拟结果表明,吸波粒子含量为50%的材料,其吸波性能最优;厚度仅为1.6 mm的材料,有效吸收带宽为5.0 GHz(12.3~17.3 GHz)。吸波粒子优异的吸波性能,源于介电损耗和磁损耗的协同作用以及合适的阻抗匹配率和衰减常数。

关键词 无机非金属材料吸波材料FeCo石墨烯吸波性能阻抗匹配    
Abstract

FeCo/graphene was synthesized by twostep process, i.e. co-precipitation and then annealing treatment. The phase constituent and morphology of the as-prepared FeCo/graphene were characterized by XRD, FESEM and TEM, respectively. Further, composites of FeCo/graphene-paraffin with different filler amount were prepared and their electromagnetic parameters were measured by microwave vector network analyzer. Then, the reflection loss of the composites was calculated. Results show that the composite of thickness 1.6 mm with the mass ratio of 1:1 for FeCo/graphene to paraffin exhibits the optimal microwave absorption property with an effective bandwidth of 5.0 GHz (12.3~17.3 GHz). The excellent microwave absorption properties of the composite may originate from the combination of dielectric and magnetic loss along with the proper impedance match ratio and attenuation constant.

Key wordsunorganic non-metallic materials    microwave absorbing materials    FeCo    graphene    microwave absorption properties    impedance match
收稿日期: 2017-05-16     
ZTFLH:  TB332  
基金资助:国防基础科研重点项目(A35201XXXXX),国家自然科学基金(51303106),三束材料改性教育部重点实验室基金(LABKF1502)
作者简介:

作者简介 褚海荣,男,1990年生,硕士生

图1  FeCo/石墨烯制备过程
图2  FeCo/石墨烯XRD谱图
图3  FeCo/石墨烯的SEM和TEM照片
图4  不同厚度且吸波粒子含量不同的复合材料的反射损耗曲线
图5  吸波粒子含量不同的复合材料的介电常数
图6  吸波粒子含量不同的复合材料的Cole-Cole环
图7  FeCo/石墨烯的μ″(μ′)-2f -1与频率的关系
图8  复合材料的阻抗匹配率和衰减常数
[1] Shahzad F, Alhabeb M, Hatter C B, et al.Electromagnetic interference shielding with 2D transition metal carbides(MXenes)[J]. Science, 2016, 353(6304): 1137
[2] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666
[3] Wang C, Han X, Xu P, et al.The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98(7): 072906
[4] Cao M S, Wang X X, Cao W Q, et al.Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2015, 3(26): 6589
[5] Singh K, Ohlan A, Pham V H, et al.Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution[J]. Nanoscale, 2013, 5(6): 2411
[6] Zhang H, Xie A, Wang C, et al.Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2013, 1(30): 8547
[7] Ren Y, Zhu C, Qi L, et al.Growth of γ-Fe2O3 nanosheet arrays on graphene for electromagnetic absorption applications[J]. RSC Advances, 2014, 4(41): 21510
[8] Ren F, Zhu G, Ren P, et al.Cyanate ester resin filled with graphene nanosheets and CoFe2O4-reduced graphene oxide nanohybrids as a microwave absorber[J]. Applied Surface Science, 2015, 351: 40
[9] Fu M, Jiao Q, Zhao Y.Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties[J]. Journal of Materials Chemistry A, 2013, 1(18): 5577
[10] Li J, Liu H B, Yang L.Research on Microwave Absorption Properties of FeCo/Graphite Nanocomposite[J]. Journal of Inorganic Materials, 2014, 29(05): 470(李佳, 刘洪波, 杨丽. 纳米铁钴合金/石墨复合材料的微波吸收性能研究[J]. 无机材料学报, 2014, 29(05): 470)
[11] Chen P, Chu H R, Yu Q, et al.Method for preparation of FeCo/reduced graphene oxide microwave absorption composite [P]. China patent, CN201710371155X, 2017(陈平, 褚海荣, 于祺等. FeCo/还原氧化石墨烯复合吸波材料的制备方法[P]. 中国发明专利, CN201710371155X, 2017)
[12] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339
[13] Li X, Feng J, Du Y, et al.One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber[J]. Journal of Materials Chemistry A, 2015, 3(10): 5535
[14] Wang G, Gao Z, Wan G, et al.High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers[J]. Nano Research, 2014, 7(5):704
[15] Lv H, Ji G, Liang X H, et al.A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties[J]. Journal of Materials Chemistry C, 2015, 3(19): 5056
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[12] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[13] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[14] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[15] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.