Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 348-356    DOI: 10.11901/1005.3093.2017.285
  研究论文 本期目录 | 过刊浏览 |
复合材料头盔壳体用超薄层合板冲击后的压缩性能
马欢1, 张国利1(), 朱有欣2, 王伟伟1, 王志鹏1
1 天津工业大学纺织学院 先进纺织复合材料天津市和教育部共建重点实验室 天津 300387
2 威海光威复合材料股份有限公司 威海 264200
Compression Performance after Being Subjected to Impact of Ultra-thin Composite Laminates for Helmet
Huan MA1, Guoli ZHANG1(), Youxin ZHU2, Weiwei WANG1, Zhipeng WANG1
1 Key Laboratory of Advanced Textile Composites, Tianjin and Ministry of Education, College of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
2 Weihai Guangwei Composites Material Co., Ltd, Weihai 264200, China
引用本文:

马欢, 张国利, 朱有欣, 王伟伟, 王志鹏. 复合材料头盔壳体用超薄层合板冲击后的压缩性能[J]. 材料研究学报, 2018, 32(5): 348-356.
Huan MA, Guoli ZHANG, Youxin ZHU, Weiwei WANG, Zhipeng WANG. Compression Performance after Being Subjected to Impact of Ultra-thin Composite Laminates for Helmet[J]. Chinese Journal of Materials Research, 2018, 32(5): 348-356.

全文: PDF(2665 KB)   HTML
摘要: 

使用[0°/0°/0°]T、[45°/0°/45°]T两种铺层角度将碳纤维经面缎纹织物、碳纤维平纹织物预浸料、不同面密度芳纶纬编双轴向织物(MBWK)三种增强材料混杂铺层,制备出厚度为1.30 mm的复合材料头盔壳体用超薄层合板。测试分析了层板冲击后的压缩性能,用C扫描超声波检测仪测试了层合板冲击损伤图像,使用Image Pro Plus图像分析软件计算出不同冲击条件下的超薄层合板冲击损伤面积,研究了增强体结构类型、铺层角度对超薄复合材料层合板冲击后压缩性能的影响。结果表明,使用铺层角度为[45°/0°/45°]T的增强体结构可抑制层板沿纤维方向的冲击损伤裂纹的扩展,但是冲击点损伤破坏严重;纬编双轴向织物的面密度越大,则层板冲击后的凹坑深度越小。与其他铺层结构相比,当铺层角度为[0°/0°/0°]T时底层为碳纤维预浸料、中间层纬编双轴向织物面密度为630 g/m2、面层为碳纤维经面缎纹织物的复合材料超薄层板的冲击损伤面积与凹坑深度均最小,分别为225.28 mm2、0.16 mm,其剩余冲击后压缩强度达到最大值97.43 MPa,压缩强度保持率75.72%。这种结构,具有优异的冲击后压缩性能。

关键词 复合材料超薄头盔壳体增强体混杂铺层角度冲击后压缩    
Abstract

Ultra-thin composite laminates of 1.30 mm for making helmet were fabricated by 5-harness satin weave cabon fiber fabric, plain weave carbon fiber prepreg and kevlar multilayered biaxial weft knitted (MBWK) fabric with different areal weight. The stacking sequence were [0°/0°/0°]T and [45°/0°/45°]T. The composite laminates were subjected to given drop hammer impacts and then the mechanical property of compression after impact (CAI) was measured and analyzed. The impact damage was assessed subsequently by coupled ultrasound scanner and the damage area was calculated by image analysis software of Image Pro Plus, and the influence of reinforcement, stacking sequence on CAI were investigated. It is observed that reinforcement with [45°/0°/45°]T could restrain the propagation of crack along the fiber direction, nevertheless, the impact point of laminates was seriously damaged. And the dent depth was smaller with the increasing areal weight of MBWK fabric. Compared with other structures, the ultra-thin composite laminate, prepared with stacking sequence of [0°/0°/0°]T, bottom layer of carbon fiber prepreg, the middle layer of MBWK fabric and the top layer of 5-harness satin carbon fabric, presented the smallest damage area and dent depth i.e. 225.28 mm2 and 0.16 mm respectively, correspondingly the residual compressive strength reaches the maximum of 97.43 MPa and the compressive strength retention rate was 75.72%. It follows that this reinforcement structure exhibits excellent compresion performance after being subjected to drop hammer impact effect.

Key wordscomposite    ultra-thin helmet shell    hybrid of reinforcement    stacking sequence    compression after impact
收稿日期: 2017-04-26     
基金资助:资助项目 天津市科技计划(16YFZCGX00190)
作者简介:

作者简介 马 欢,女,1990年生,硕士生

Parameters Prepreg MBWK Satin of fabric
Specifications 3011-plain - - - 5-harness satin
Areal weight/g·m-2 240 630 570 330 275
Thickness/mm 0.175 0.85 0.75 0.50 0.40
Warp density/ends·10 cm-1 90 47 47 47 70
Weft density/ends·10 cm-1 90 47 47 45 70
Resin weight content/% 40 - - - -
表1  层合板用原材料参数
Specimens Materials Stacking sequence Thickness/mm
P0630MS0 Prepreg-630 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
P45630MS45 [45°/0°/45°]T 1.30
P0570MS0 Prepreg-570 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
P45570MS45 [45°/0°/45°]T 1.30
S0630MS0 Stain of fabric-630 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
S45630MS45 [45°/0°/45°]T 1.30
S0330MS0 Stain of fabric-330 g·m-2 MBWK- Stain of fabric [0°/0°/0°]T 1.30
S45330MS45 [45°/0°/45°]T 1.30
表2  层合板铺层结构设计
图1  冲击和冲击后压缩夹具图
图2  两种铺层角度冲击载荷-位移图和载荷-时间图
图3  层板背面损伤破坏形貌
图4  P45570MS45层板载荷-时间、能量-时间对应图
图5  层板冲击损伤长度、损伤宽度、损伤面积及凹坑深度
Energy parameters Peak energy, Ei/J-1 Maximum energy, Emax/J-1 Residual energy, Er/J-1
Reinforcement [0°/0°/0°]T [45°/0°/45°]T [0°/0°/0°]T [45°/0°/45°]T [0°/0°/0°]T [45°/0°/45°]T
P630MS 4.04 3.69 4.41 4.36 0.37 0.67
P570MS 4.40 3.52 4.51 4.73 0.11 1.21
S630MS 4.24 3.47 4.60 4.37 0.36 0.89
S330MS 4.11 3.29 4.33 4.52 0.23 1.23
表3  8种层板峰值能量、最大能量、残余能量对应关系
图6  层板冲击背面损伤超声C扫描结果
图7  层板冲击后压缩载荷-位移图
[0°/0°/0°]T Residual compressive strength /MPa Compressive strength/MPa [45°/0°/45°]T Residual compressive
strength/MPa
Compressive strength/MPa
P630MS 97.43 128.67 P630MS 85.49 115.63
P570MS 77.67 110.47 P570MS 84.50 104.76
S630MS 81.87 121.35 S630MS 95.50 113.28
S330MS 68.59 101.83 S330MS 81.17 90.32
表4  层板未冲击压缩强度与剩余压缩强度测试结果
[1] Swolfs Y, Gorbatikh L, Verpoest I.Fibre hybridisation in polymer composites: a review[J]. Compos. Part A Appl. Sci. Manuf., 2014, 67: 181
[2] Wo X Y, Tu B, Xia Y W.The properties and application of aramid fibers and the composite materials[J]. Spacecr. Recovery. Remote Sens., 2005, 26(2): 50(沃西源, 涂彬, 夏英伟. 芳纶纤维及其复合材料性能与应用研究[J]. 航天返回与遥感, 2005, 26(2): 50)
[3] Han C F, Sun Y, Xu Y R, et al.Research progress of reinforced fabrics used for composite helmet shells[J]. J. Text. Res., 2014, 35(8): 116(韩朝锋, 孙颖, 徐艺榕等. 头盔壳体用复合材料增强织物研究进展[J]. 纺织学报, 2014, 35(8): 116)
[4] Lopes C S, Seresta O, Coquet Y, et al.Low-velocity impact damage on dispersed stacking sequence laminates. Part I: experiments[J]. Compos. Sci. Technol., 2009, 69: 926
[5] Tham C Y, Tan V B C, Lee H P. Ballistic impact of a KEVLAR helmet: experiment and simulations[J]. Int. J. Impact Eng., 2008, 35: 304
[6] Kadlec M, Kafka V.Strain concentration during the compression of a carbon/epoxy composite after impact[J]. Int. J. Struct. Integrity, 2015, 6: 279
[7] Kulkarni S G, Gao X L, Horner S E, et al.Ballistic helmets-their design, materials, and performance against traumatic brain injury[J]. Compos. Struct., 2013, 101: 313
[8] Campbell D T, Cramer D R.Hybrid thermoplastic composite ballistic helmet fabrication study [A]. The 3rd Society for the Advancement of Material and Process Engineering[C]. Shanghai, 2008
[9] Gustin J, Joneson A, Mahinfalah M, et al.Low velocity impact of combination kevlar/carbon fiber sandwich composites[J]. Compos. Struct., 2005, 69: 396
[10] Bejan L, Taranu N, S?rbu A.Effect of hybridization on stiffness properties of woven textile composites[J]. Appl. Compos. Mater., 2013, 20: 185
[11] Wan Y Z, Lian J J, Huang Y, et al.Preparation and characterization of three-dimensional braided carbon/Kevlar/epoxy hybrid composites[J]. J. Mater. Sci., 2007, 42: 1343
[12] Grujicic M, Pandurangan B, Koudela K L, et al.A computational analysis of the ballistic performance of light-weight hybrid composite armors[J]. Appl. Surf. Sci., 2006, 253: 730
[13] Huang Y, Liu X H, Li Y Z.Study of impact damage characteristics of G/K commgled-wove-fabric reinforced composite plate[J]. Aerosp. Mater. Technol., 2002, 32(6): 26(黄英, 刘晓辉, 李郁忠. G/K织物混杂增强复合材料层合板冲击损伤特性研究[J]. 宇航材料工艺, 2002, 32(6): 26)
[14] Fuernschuss B, Kandare E, Sabo A, et al.Rethinking the safety of jockey helmets: A statistical comparison of different composite laminate helmet shells[J]. Procedia Eng., 2016, 147: 507
[15] Wang Y J, Wu X Q, Chen L.Design and fabrication of hybrid fiber composite of helmet[J]. J. Wuhan Univ. Technol., 2009, 31(4): 1(王燕杰, 吴晓青, 陈利. 混杂纤维复合材料头盔的设计与制备[J]. 武汉理工大学学报, 2009, 31(4): 1)
[16] Hitchen S A, Kemp R M J. The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite[J]. Composites, 1995, 26(3): 207
[17] Hu J Y.Research on low-velocity impact properties and damage mechanism of woven fabric composite [D]. Harbin: Harbin Institute of Technology, 2010(胡靖元. 织物复合材料低速冲击特性与损伤机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[18] Wang L P, Yan Y, Zeng D.Finite element analysis of low-velocity impact damage of mixed woven composites[J]. Acta Aeronaut. Astronaut. Sin., 2007, 28(S1): 121(王立朋, 燕瑛, 曾东. 混合机织复合材料低速冲击损伤有限元分析[J]. 航空学报, 2007, 28(S1): 121)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.