Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 839-846    DOI: 10.11901/1005.3093.2017.274
  研究论文 本期目录 | 过刊浏览 |
粉煤灰掺量对磷酸钾镁水泥水化动力学的影响
赵思勰, 晏华, 汪宏涛(), 李云涛, 戴丰乐
后勤工程学院化学与材料工程系重庆 401311
Effect of Fly Ash Content on Hydration Kinetics of Magnesium Potassium Phosphate Cement
Sixie ZHAO, Hua YAN, Hongtao WANG(), Yuntao LI, Fengle DAI
Department of Chemical and Materials Engineering, Logistical Engineering University, Chongqing 401311, China
引用本文:

赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐. 粉煤灰掺量对磷酸钾镁水泥水化动力学的影响[J]. 材料研究学报, 2017, 31(11): 839-846.
Sixie ZHAO, Hua YAN, Hongtao WANG, Yuntao LI, Fengle DAI. Effect of Fly Ash Content on Hydration Kinetics of Magnesium Potassium Phosphate Cement[J]. Chinese Journal of Materials Research, 2017, 31(11): 839-846.

全文: PDF(1226 KB)   HTML
摘要: 

使用等温微量热仪测定了粉煤灰掺量分别为0、5%、10%、15%、20%和25%的磷酸钾镁水泥((Magnesium potassium phosphate cement, MKPC)在20℃的水化放热速率和放热量。根据Knudsen和Kondo水化动力学公式计算了MKPC水化最终放热量Q、各阶段的水化阻力N和反应速率常数K,研究了粉煤灰掺量对MKPC水化历程的影响机理。结果表明:对于不同粉煤灰掺量的MKPC最终放热量和动力学参数的计算,Knudsen和Kondo水化动力学公式都具有优异的适用性,拟合相关度很高。磷酸钾镁水泥的水化过程可分为6个阶段,水化反应始于第二阶段,水化进行至第四阶段时MKPC由结晶成核直接进入到扩散阶段。随着粉煤灰掺量从0提高到15%,MKPC体系中反应组分MgO和KH2PO4的含量减少,水化放热量降低,粉煤灰主要以物理填充作用参与MKPC水化,对磷酸镁水泥水化过程影响较小。当粉煤灰掺量为15%~25%、硼砂相对含量减少时,粉煤灰的火山灰效应显著,水化放热量增大, MKPC各水化阶段的NK值的变化较大。

关键词 无机非金属材料水化过程水化动力学粉煤灰磷酸钾镁水泥火山灰效应    
Abstract

The rate and quantity of heat release during hydration of magnesium potassium phosphate cement (MKPC) containing 0、5%、10%、15%、20% and 25% fly ash respectively were measured at 20℃ via isothermal calorimetry. The effect of fly ash content on the hydration process of MKPC was investigated in terms of the relevant kinetics parameters, as well as the final heat release Q、hydration resistance N and reaction constant K were calculated by the Knudsen and Kondo hydration kinetics formula. The results show that Knudsen and Kondo hydration kinetics formula presented a good applicability for calculation of the final heat release and kinetics parameters of MKPC, with very high relevance fitting. Hydration process of MKPC can be divided into 6 stages, and hydration reaction started from the second stage. At the fourth stage of hydration, MKPC changed from nucleation and crystal growth process to diffusion process directly. The content of reaction components of MgO and KH2PO4 decrease with the increasing fly ash content varied from 0~15%,resulting in decrease of hydration heat of MKPC. Fly ash participanted hydration as physical fitter and showed little influence on the hydration process of of MKPC. When the incorporation amount of fly ash content varied from 15% to 25%, an increase of hydration heat was matched and both content N and K for each hydration stage of MKPC presented huge variation due to the decrease of borax content and the pozzolanic effect of fly ash.

Key wordsinorganic non-metallic materials    hydration process    hydration kinetics    fly ash    magnesium potassium phosphate cement    pozzolanic effect
收稿日期: 2017-04-24     
基金资助:资助项目国家自然科学基金(51272283)
作者简介:

赵思勰,男,1994年生,硕士生

Oxide MgO SiO2 CaO Fe2O3 Al2O3 SO3 P2O5 TiO2 Other
Content 88.18 7.23 2.20 0.68 1.31 0.08 0.11 0.13 0.08
表1  重烧氧化镁的化学成分
Oxide SiO2 Fe2O3 AL2O3 CaO MgO K2O Na2O SO3 Other
Content 44.02 12.15 27.25 1.41 1.77 1.06 0.81 1.09 10.44
表2  粉煤灰的化学成分
图1  磷酸钾镁水泥的水化阶段划分
图2  粉煤灰掺量对MKPC放热行为的影响
图3  1/Q与1/(t-t0)的拟合曲线
Content 0 5% 10% 15% 25% 30%
Q/J·g-1 148.81 136.63 134.66 100.07 109.32 125.85
t50/h 1.83 1.72 2.14 2.09 1.92 2.06
R 0.98902 0.98730 0.98411 0.96455 0.97500 0.98409
表3  不同粉煤灰掺量下MKPC最终放热量Q∞、半衰期t50以及相关度的R
图4  MKPC stage II-stage VI的拟合效果
图5  粉煤灰掺量不同的MKPC各水化阶段的水化动力学常数
[1] Wang H T, Qian J S, Wang J G.Review of magnesia-phosphate cement[J]. Mater. Rev., 2005, 19(12): 46(汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005, 19(12): 46)
[2] Yang Q B, Zhu B R, Wu X L.Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater. Struct., 2000, 33: 229
[3] Li J S, Zhang W B, Cao Y.Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement[J]. Construct. Build. Mater., 2014, 58: 122
[4] You C, Qian J S, Qin J H, et al.Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC)[J]. Cem. Concr. Res., 2015, 78: 179
[5] Ding Z, Li Z J.High-early-strength magnesium phosphate cement with fly ash[J]. Mater. J., 2005, 102: 375
[6] Buj I, Torras J, Rovira M, et al.Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals[J]. J. Hazard. Mater., 2010, 175: 789
[7] Zhang S Y, Shi H S.Performances and applications of magnesium phosphate cement-based composite modified by fly ash[J]. Fly Ash Compreh. Utiliz., 2009, (1): 54(张思宇, 施惠生. 粉煤灰改性磷酸镁水泥基材料的性能与应用[J]. 粉煤灰综合利用, 2009, (1): 54)
[8] Lu Y.Performance of magnesium phosphate cement modified with fly ash under low temperatures[J]. Bull. Chin. Ceram. Soc., 2015, 34: 3596(路毅. 低温下粉煤灰改性磷酸镁水泥性能研究[J]. 硅酸盐通报, 2015, 34: 3596)
[9] Wang H T.Preparation of new low-cost phosphate cement with fly ash[J]. Coal Ash, 2010, (5): 38(汪宏涛. 利用粉煤灰制备新型低成本磷酸盐水泥[J]. 粉煤灰, 2010, (5): 38)
[10] Li G X, Tong W L, Zhang G, et al.Influence of fly ash and slag on the properties of magnesium phosphate cement[J]. Bull. Chin. Ceram. Soc., 2016, 35: 352(李国新, 仝万亮, 张歌等. 粉煤灰和矿粉对磷酸镁水泥性能的影响[J]. 硅酸盐通报, 2016, 35: 352)
[11] Huang Y X.Research of magnesium phosphate cement modified by fly ash and repair performance [D]. Chongqing: Chongqing University, 2011(黄义雄. 磷酸镁水泥的粉煤灰改性与修补性能研究 [D]. 重庆: 重庆大学, 2011)
[12] Lin W, Sun W, Li Z J.Study on the effects of fly ash in magnesium phosphate cement[J]. J. Build. Mater., 2010, 13: 716(林玮, 孙伟, 李宗津. 磷酸镁水泥中的粉煤灰效应研究[J]. 建筑材料学报, 2010, 13: 716)
[13] Yan P Y, Zheng F.Kinetics model for the hydration mechanism of cementitious materials[J]. J. Chin. Ceram. Soc., 2006, 34: 555(阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006, 34: 555)
[14] Fu C X, Shen W X, Yao T Y, et al.Physical Chemistry [M]. 4th ed. Beijing: Higher Education Press, 2003(傅彩霞, 沈文霞, 姚天扬. 物理化学[M]. 第4版. 北京: 高等教育出版社, 2003)
[15] Rao M J, Liu S H, Fang K H, et al.Effect of limestone powder on hydration kinetics of cement-based composites[J]. J. Build. Mater., 2009, 12: 734(饶美娟, 刘数华, 方坤河等. 石灰石粉对水泥基材料水化动力学的影响[J]. 建筑材料学报, 2009, 12: 734)
[16] Wang A Q, Yang N R, Zhong B Q, et al.Hydration kinetic of fly ash cement[J]. J. Chin. Ceram. Soc., 1997, 25: 123(王爱勤, 杨南如, 钟白茜等. 粉煤灰水泥的水化动力学[J]. 硅酸盐学报, 1997, 25: 123)
[17] Merzouki T, Bouasker M, El Houda Khalifa N, et al. Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age[J]. Construct. Build. Mater., 2013, 44: 368
[18] Wu X Q.Kinetic study on hydration of blast furnace slag cement[J]. J. Chin. Ceram. Soc., 1988, 16: 423(吴学权. 矿渣水泥水化动力学研究[J]. 硅酸盐学报, 1988, 16: 423)
[19] Han F H, Wang D M, Yan P Y.Hydration kinetics of composite binder containing different content of slag or fly ash[J]. J. Chin. Ceram. Soc., 2014, 42: 613(韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报, 2014, 42: 613)
[20] Yan P Y.Mechanism of fly ash’s effects during hydration process of composite binder[J]. J. Chin. Ceram. Soc., 2007, 35(S1): 167(阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007, 35(S1): 167)
[21] Krstulović R, Dabić P.A conceptual model of the cement hydration process[J]. Cem. Concr. Res., 2000, 30: 693
[22] Knudsen T.On particle size distribution in cement hydration [A]. Proceedings of 7th International Congress on the Chemistry of Cement[C]. Paris, 1980
[23] Kondo R, Ueda S.Kinetics of hydration of cement [A]. Proceedings of 5th International Conference on the Chemistry of Cement, SESS II-4[C]. Tokyo, 1968
[24] Wang H T, Ding J H, Zhang S H, et al.Study on the influent factors of magnesium phosphate cement hydration heat[J]. J. Funct. Mater., 2015, 46: 22098(汪宏涛, 丁建华, 张时豪等. 磷酸镁水泥水化热的影响因素研究[J]. 功能材料, 2015, 46: 22098)
[25] Le Rouzic M, Chaussadent T, Platret C, et al.Mechanisms of k-struvite formation in magnesium phosphate cements[J]. Cem. Concr. Res., 2017, 91: 117
[26] Chang Y, Shi C J, Yang N, et al.Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J. Chin. Ceram. Soc., 2013, 41: 492(常远, 史才军, 杨楠等. 不同细度MgO 对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013, 41: 492)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.