Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 191-199    DOI: 10.11901/1005.3093.2017.270
  研究论文 本期目录 | 过刊浏览 |
织构表面在油和水中的润湿性及摩擦学性能
马明明, 连峰(), 姜康, 张会臣
大连海事大学交通运输装备与海洋工程学院 大连 116026;
Wettability and Tribological Performance of Texture Surface in Oil and Water
Mingming MA, Feng LIAN(), Kang JIANG, Huichen ZHANG
College of Transporation Equipments and Ocean Engineering, Dalian Maritime University, Dalian 116026, China;
引用本文:

马明明, 连峰, 姜康, 张会臣. 织构表面在油和水中的润湿性及摩擦学性能[J]. 材料研究学报, 2018, 32(3): 191-199.
Mingming MA, Feng LIAN, Kang JIANG, Huichen ZHANG. Wettability and Tribological Performance of Texture Surface in Oil and Water[J]. Chinese Journal of Materials Research, 2018, 32(3): 191-199.

全文: PDF(6211 KB)   HTML
摘要: 

为研究织构形貌对表面润湿性和摩擦学性能的影响,建立凹坑表面流体动压润滑数学模型,计算底面为正方形的棱柱和圆台形凹坑表面的润滑膜动压承载力。计算结果表明,凹坑面积率为19.6%时,圆台形凹坑表面的流体动压润滑膜承载力是棱柱凹坑表面的2.4倍。利用激光加工技术,在5083船用铝合金表面加工与数学模型一致的棱柱形和圆台形凹坑织构,利用低表面能修饰和溶胶凝胶法涂敷SiO2改变表面润湿性能。接触角测试显示,棱柱形凹坑表面的接触角比圆台形凹坑表面大2°~4°。摩擦实验显示,将织构和化学组分相结合的双疏表面可以显著地提高摩擦学性能。圆台形凹坑表面的摩擦学性能优于棱柱形凹坑表面,与计算结果相符。凹坑形貌对表面摩擦学性能的影响大于对表面润湿性的影响。

关键词 材料表面与界面摩擦学性能织构润滑膜承载力润湿性润滑介质    
Abstract

In order to study the effect of the form of surface texture on the wettability and tribological performance of materials in oil and water, a theoretical model of hydrodynamic lubrication of textured surface is established to calculate the carrying capacity of the hydrodynamic lubricating film for material with surface texture composed of prism- and cone frustum- like concaves. The calculated results indicate that the carrying capacity of the hydrodynamic lubricating film of the surface with cone frustum-like concaves is 2.4 times larger than that with prism-like ones in case of the area ratio of concaves is 19.6%. According to the above theoretical mode, surface texture composed of prism- and cone frustum-like concaves respectively was established on 5083 Al-alloy via laser processing and then was surface modified with sol-gel SiO2 coating of low-surface energy. The test result shows that the contact angle of the surface with prism-like concaves is 2°~4° bigger than that with cone frustum-like ones. While with two surface textures plus amphiphobic coating, the tribological performance the 5083 Al-alloy can be significantly enhanced. Besides, the tribological performance of the 5083 Al-alloy with surface texture of cone frustum-like concaves is better than that of prism ones, which is consistent with the calculation results. Finally, the effect of the shape of concaves on the tribological performance is greater than that on the wettability.

Key wordssurface and interface in the materials    tribological performance    texture    lubricating film carrying capacity    wettability    lubricant
收稿日期: 2017-04-20     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51275064和50975036),中央高校基本科研业务费专项资金(3132016354),辽宁省工业公关计划(2012220006)
作者简介:

作者简介 马明明, 男, 1989年生, 硕士生

图1  摩擦副和织构单元示意图
图2  油介质中的无量纲润滑膜压力分布
图3  表面织构的三维形貌
图4  凹坑的横截面形貌
Droplet Polishing Blank texture Low energy With SiO2
Prism Cone frustum Prism Cone frustum Prism Cone frustum
Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle
Water 71.8 <5 <5 / 158.0 / 154.8 / 163.3 2.1 160.7 2.5
Sea-water 65.3 <5 <5 / 146.1 / 144.2 / 155.8 3.5 153.8 4.4
Oil 53.3 <5 <5 / 118.2 / 114.6 / 128.7 / 125.2 /
表1  试样的接触角和滚动角
图5  棱柱形和圆台形凹坑表面在不同介质中的摩擦系数
Lubricants Polishing Blank texture Low energy With SiO2
Prism Cone frustum Prism Cone frustum Prism Cone frustum
Water 0.714 0.677 0.616 0.639 0.587 0.576 0.496
Sea-water 0.687 0.634 0.578 0.596 0.550 0.517 0.448
Oil 0.190 0.168 0.139 0.146 0.125 0.124 0.097
表2  试样的平均摩擦系数
图6  涂覆SiO2试样的磨痕图
Lubricants Polishing Blank texture Low energy With SiO2
Prism Cone frustum Prism Cone frustum Prism Cone frustum
Water 2.510 2.437 2.357 2.306 2.113 2.161 1.983
Sea-water 2.696 2.577 2.395 2.324 2.204 2.281 2.012
Oil 0.355 0.261 0.228 0.233 0.206 0.217 0.182
表3  试样的磨损量
图7  空白织构试样的磨屑和EDS分析
图8  空白织构试样的磨痕
[1] Hamilton D B, Walowit J A, Allen C M.A theory of lubrication by microirregularities[J]. J. Basic. Eng., 1966, 88(1): 177
[2] Tonder K.Hydroddynamic effects of tailored inlet roughnesses: extended theory[J]. Tribo. Int., 2004, 37(2): 137
[3] Wen S Z.Study on lubrication theory progress and thinking over[J]. Tribology, 2007, 27(6): 497(温诗铸. 润滑理论研究的进展与思考[J]. 摩擦学学报, 2007, 27(6): 497)
[4] Shen C, Khonsari M M.Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding[J]. Tribo. Int., 2015, 82: 1
[5] Wang X L, Kato K, Koshi A, et al.Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribo. Int., 2003, 36(3): 189
[6] Ma C B, Zhu H.An optimum design model for textured surface with elliptical-shape dimples under hydrodynamic lubrication[J]. Tri. Int., 2011, 44: 987
[7] Sun X D, Liu G, Li L Y, et al.Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chin. J. Mater. Res., 2015, 29(7): 523(孙小东, 刘刚, 李龙阳等. 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29(7): 523)
[8] Li P P, Chen X H, Yang G B, et al.Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil[J]. Appl. Surf. Sci., 2014, 300: 184
[9] Wang H Y, Yan L D, Gao D J, et al.Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1-2): 62
[10] Yan C P, Wang L, Wang Q D, et al.Tribological properties of bronze with different surface wettability[J]. Tribology, 2014, 34(3): 297(严诚平, 王莉, 王权岱等. 不同润湿性锡青铜表面摩擦特性实验研究[J]. 摩擦学学报, 2014, 34(3): 297)
[11] Kim S J, Jang S K, Han M S, et al.Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship[J]. Trans. Nonferrous Met. Soc. China, 2013, 23(3): 636
[12] Zhou T, Huang B Y, Zhou K C, et al.Research on crossion-resistance of rapidly solidified aluminum alloys[J]. Rare. Metal. Mat. Eng., 2004, 33(2): 187(周涛, 黄伯云, 周科朝等. 快速凝固耐热铝合金耐蚀性能的研究[J]. 稀有金属材料与工程, 2004, 33(2): 187)
[13] Wang S S, Yang L, Huang Y H, et al.Environments of 6061 Al alloy anodized in boron-sulfuric acid solution[J]. Chin. J. Mater. Res., 2017, 31(1): 49(王莎莎, 杨浪, 黄云华等. 硼硫酸阳极氧化6061铝合金在不同大气环境中的初期腐蚀行为研究[J]. 材料研究学报, 2017, 31(1): 49)
[14] Soleimani R, Mahboubi F, Kazemi M, et al.Corrosion and tribological behavior of electroless Ni-P/nano-SiC composite coating on aluminum 6061[J]. Surf. Eng., 2015, 31(9): 714
[15] Trauth D, Klocke F, Terhorst M, et al.Computational fluid dynamics analysis of a machine hammer peened surface structure for lubricated sliding contacts[J]. J. Tribo., 2015, 138(2): 021704
[16] Yu H, Deng H, Huang W, et al.The effect of dimple shapes on friction of parallel surface[J]. J. Eng. Tribo., 2011, 225(J8): 693
[17] Lin Y Z, Wang T L.Experimental study on resistance power to the seawater corrosion of carbon fiber reinforced concrete beams[J]. J. Shandong Uni. Sc. Technol.(Nat. Sci.), 2008, 27(2): 44(林跃忠, 王铁林. 碳纤维增强混凝土梁正截面抗海水侵蚀能力实验研究[J]. 山东科技大学学报(自然科学报), 2008, 27(2): 44)
[18] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8): 988
[19] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday. Soc., 1944, 40: 546
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[6] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[7] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[8] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] 王伟, 周山琦, 宫鹏辉, 张浩泽, 史亚鸣, 王快社. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J]. 材料研究学报, 2023, 37(1): 70-80.
[10] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] 宁博, 李志超, 武会宾, 张丙军, 黄曼丽, 丁超. 改善09MnNi容器钢低温冲击韧性的机理[J]. 材料研究学报, 2022, 36(9): 660-666.
[12] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[13] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[14] 袁强强, 汪志刚, 江永芳, 张迎晖, 黄安康, 叶洁云. 温轧温度对Cr-Ti-B系低碳钢组织与织构的影响[J]. 材料研究学报, 2022, 36(2): 81-89.
[15] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.