Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 216-224    DOI: 10.11901/1005.3093.2017.268
  研究论文 本期目录 | 过刊浏览 |
TRIP980高强钢/SPCC低碳钢的异种钢板电阻点焊接头组织及力学性能研究
岑耀东1,2, 陈芙蓉1()
1 内蒙古工业大学材料科学与工程学院 呼和浩特 010051;
2 内蒙古科技大学材料与冶金学院 包头 014010;
Microstructure and Mechanical Property of Resistance Spot Welded Joint of Dissimilar Steels of TRIP 980 High Strength Steel and SPCC Low Carbon Steel
Yaodong CEN1,2, Furong CHEN1()
1 School of Materials Science and Engineering of Inner Mongolia University of Technology, Hohhot 010051, China;
2 School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China;
引用本文:

岑耀东, 陈芙蓉. TRIP980高强钢/SPCC低碳钢的异种钢板电阻点焊接头组织及力学性能研究[J]. 材料研究学报, 2018, 32(3): 216-224.
Yaodong CEN, Furong CHEN. Microstructure and Mechanical Property of Resistance Spot Welded Joint of Dissimilar Steels of TRIP 980 High Strength Steel and SPCC Low Carbon Steel[J]. Chinese Journal of Materials Research, 2018, 32(3): 216-224.

全文: PDF(8094 KB)   HTML
摘要: 

采用电阻点焊对1.5 mm等厚TRIP980高强钢/SPCC低碳钢板进行焊接。以点焊接头的拉剪载荷为评价指标。 利用电子拉伸试验机、显微硬度仪、OM、SEM、EBSD、EDS对所获得的较优焊接参数时的点焊接头性能及显微组织进行测试和分析。结果表明,点焊接头的熔核呈椭圆形,熔核由SPCC低碳钢侧向TRIP980高强钢侧偏移;点焊接头的拉剪断裂位置发生在结合面边缘近SPCC低碳钢侧的熔合区处,断口为脆性断裂;SPCC低碳钢侧熔核硬度低于TRIP980高强钢侧,但SPCC低碳钢侧熔合区硬度出现峰值;母材的部分互熔使熔核中C、Mn、Si、Al等元素浓度由TRIP980高强钢侧到SPCC低碳钢侧均匀递减;近SPCC低碳钢侧熔合区组织差异较大,近母材侧为软相铁素体,近熔核侧为硬相马氏体,这种组织差异导致的应力集中是影响接头力学性能的主要原因。

关键词 金属材料异种钢电阻点焊显微组织力学性能    
Abstract

TRIP (transformation induced plasticity) 980 high strength steel and SPCC (steel plate cold common) low carbon steel of about 1.5 mm in thickness were welded by resistance spot welding. The optimal welding parameters were acquired according to the test results of the joint shear tensile load. Then the performance and microstructure of the spot welded joint prepared by the optimal process were characterized by means of electronic tensile testing machine, micro-hardness meter, OM, SEM, EBSD and EDS. Results showed that the metallurgical bonding between the two base materials is realized, the molten nuclear of the spot welded joint is oval and has large deviation, molten nuclear of the side of SPCC steel is smaller than that of the TRIP980 one. The interface can obviously be observed in molten core region of spot welded joint. Shear tensile fracture of the spot welded joint is located at the interface, which is close to the edge of fusion zone of the side of SPCC steel, and the fracture is brittle fracture. The microhardness of molten nuclear on the side of the SPCC steel is lower than that of the TRIP980 one, but there existed a peak value of the hardness of nugget zone on the side of the SPCC steel. Elements of C, Mn, Si and Al etc. presented different diffusivity in the molten nuclear, and of which the concentration declines from the side of the TRIP980 steel to that of the SPCC one. The microstructure of the side melting zone of SPCC low carbon steel is quite different. The microstructure near the parent material is soft ferrite. The microstructure near the nugget side is hard martensite. The stress concentration caused by this difference is the main reason that affects the mechanical properties of the joints.

Key wordsmetallic materials    dissimilar steel    microstructure    mechanical properties    resistance spot welding
收稿日期: 2017-04-19     
ZTFLH:  TG407  
作者简介:

作者简介 岑耀东,男,1982年生,博士

Steel Mass fraction/% Mechanical properties
C Si Mn Al P S Fe RP0.2σs/MPa Rmσb/MPa A/%
SPCC 0.06 0.02 0.15 0.025 0.024 0.007 Bal. 280 391 30
TRIP980 0.31 0.92 1.95 0.76 0.013 0.002 Bal. 700 1054 20
表1  TRIP980高强钢和SPCC低碳钢的化学成分和力学性能
图1  试样尺寸及搭接方式示意图
图2  焊接电流8 kA、焊接时间25 cycle、电极压力4 kN时点焊接头的低倍组织及显微组织
图3  焊接电流8 kA、焊接时间25 cycle、电极压力4 kN时点焊接头EDS
图4  缩孔近SPCC低碳钢侧的SEM像和EDS成分分布
图5  缩孔近TRIP980高强钢侧的SEM像和EDS成分检测
图6  焊接电流8 kA、焊接时间25 cycle、电极压力4 kN时点焊接头熔核结合面EBSD
图7  焊接电流8 kA、焊接时间25 cycle、电极压力4 kN时点焊接头不同区域、位置的硬度
图8  焊接电流8 kA、焊接时间25 cycle、电极压力4 kN时的点焊接头拉剪位移曲线
图9  焊接电流8 kA、焊接时间25 cycle、电极压力4 kN时的点焊接头剪切拉伸断口照片
Rs/MPa η / %
TRIP980 SPCC TRIP980/SPCC
527 145 141 97.2
表2  剪切拉伸性能
[1] Mvola B, Kah P, Martikainen J, et al.Dissimilar high-strength steels: fusion welded joints, mismatches, and challenges[J]. Rev. Adv. Mater. Sci., 2016, 44: 146
[2] Cen Y D, Chen F R.Properties and optimized process of TRIP980 high strength steel and SPCC low carbon steel resistance spot welding of dissimilar steel[J]. J. Mech. Eng., 2017, 53(8): 91(岑耀东, 陈芙蓉. TRIP980高强钢/SPCC低碳钢的异种钢电阻点焊工艺优化及接头性能分析[J]. 机械工程学报, 2017, 53(8): 91
[3] Amirthalingam M, Van der Aa E M, Kwakernaak C, et al. Elemental segregation during resistance spot welding of boron containing advanced high strength steels[J]. Weld. World., 2015, 59: 743
[4] Brauser S, Pepke L A, Rethmeier G W, et al.Deformation behaviour of spot-welded high strength steels for automotive applications[J]. Mater. Sci. Eng., 2010, 527A: 7099
[5] Cen Y D, Chen F R.Optimization of process parameters and microstructure of the resistance plug welding TRIP980 steel and SPCC steel[J]. J. Mater. Res., 2017, 53(10): 21
[6] Xu Y B, Hou X Y, Wang Y Q, et al.Mechanical properties of high-strength V-microalloyed TRIP-aided sheet steel with bainitic ferrite matrix[J]. Chin. J. Mater. Res., 2012, 26: 175(许云波, 侯晓英, 王业勤等. 高强贝氏体基体钒微合金化TRIP钢的性能[J]. 材料研究学报, 2012, 26: 175)
[7] Wang C, Ding H, Zhang J, et al.Effect of intercritical annealing time on the microstructures and tensile properties of a high strength TRIP steel[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 457
[8] Sadasue T, Igi S, Taniguchi K.Fracture behavior and numerical study of resistance spot welded joints in high strength steel sheet[J]. Q. J. Jpn. Weld. Soc., 2014, 32: 64
[9] Park S S, Lee S M, Cho Y, et al.Evaluation of resistance spot weld interfacial fractures in tensile-shear tests of TRIP590 steels[J]. J. Kor. Inst. Met. Mater., 2008, 46: 672
[10] Perez-Medina G Y, López H F, Zambrano P, et al. Microstructural effects on the mechanical integrity of a TRIP-800 steel welded by laser-CO2 process[J]. J. Mater. Eng. Perform., 2013, 22: 607
[11] Emre H E, Ka?ar R.Development of weld lobe for resistance spot-welded TRIP800 steel and evaluation of fracture mode of its weldment[J]. Int. J. Adv. Manuf. Tech., 2016, 83: 1737
[12] Choi I, Park J, Kim J W, et al.A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application[J]. J. Weld. Join., 2015, 33: 69
[13] Yu Y, Wang F X, Yang Z D. Study on resistance spot welding technology and properties of TRIP800 high strength steel sheet [J]. Adv. Mater. Res., 2012, 391-392: 661
[14] Wei S T, Lv D, Liu R D, et al.Similar and dissimilar resistance spot welding of advanced high strength steels: welding and heat treatment procedures, structure and mechanical properties[J]. Sci. Technol. Weld. Join., 2014, 19: 427
[15] Wei S T, Liu R D, Lv D, et al.Study on fibre laser spot welding of TRIP980 steel[J]. Mater. Sci. Technol., 2015, 31: 1271
[16] Ao S, Shan H, Cui X T, et al.Effect of specimen width on the failure behavior in resistance spot weld tensile shear testing[J]. Weld. World, 2016, 60: 1095
[17] Chung K, Noh W, Yang X, et al.Practical failure analysis of resistance spot welded advanced high-strength steel sheets[J]. Int. J. Plasticity, 2017, 94: 122
[18] Cen Y D, Chen F R.Recent progress in numerical simulation of resistance seam welding[J]. Trans. China Weld. Inst., 2016, 37(2): 123(岑耀东, 陈芙蓉. 电阻缝焊数值模拟研究进展[J]. 焊接学报, 2016, 37(2): 123)
[19] Jung G S, Lee K Y, Lee J B, et al.Spot weldability of TRIP assisted steels with high carbon and aluminium contents[J]. Sci. Technol. Weld. Join., 2012, 17: 92
[20] Pouranvari M, Marashi S P H. Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors[J]. Mater. Sci. Eng., 2010, 528A: 8337
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.