Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (4): 247-254    DOI: 10.11901/1005.3093.2017.236
  研究论文 本期目录 | 过刊浏览 |
基于热动力学的磷酸镁水泥水化机理
戴丰乐1,2, 汪宏涛1(), 姜自超1, 赵思勰1
1 后勤工程学院化学与材料工程系 重庆 401311
2 中国人民解放军96726部队 清远 511500
Hydration Mechanism of Magnesium Phosphate Cement Based on Thermokinetics
Fengle DAI1,2, Hongtao WANG1(), Zichao JIANG1, Sixie ZHAO1
1 Department of Chemistry and Engineering, Logistical Engineering University, Chongqing 401311, China
2 The 96726 Unit of PLA, Qingyuan 511500, China
引用本文:

戴丰乐, 汪宏涛, 姜自超, 赵思勰. 基于热动力学的磷酸镁水泥水化机理[J]. 材料研究学报, 2018, 32(4): 247-254.
Fengle DAI, Hongtao WANG, Zichao JIANG, Sixie ZHAO. Hydration Mechanism of Magnesium Phosphate Cement Based on Thermokinetics[J]. Chinese Journal of Materials Research, 2018, 32(4): 247-254.

全文: PDF(3388 KB)   HTML
摘要: 

使用等温微量量热仪测试磷酸镁水泥的水化放热行为,基于热动力学方法研究了磷酸镁水泥的水化机理。结果表明:根据各水化阶段不同的主要反应,可将磷酸镁水泥的水化划分为初始期、MgO溶解期、[Mg(H2O)]62+生成期、MKP加速生成期、MKP减速生成期和稳定期。磷酸镁水泥的水化需要酸性环境激发,随着水化反应的进行水化体系中的H+逐渐消耗,MgO的微溶和水解使水化中后期的水化体系向碱性环境变化。水化的早期产物MKP晶体快速生长并搭接构成磷酸镁水泥整体结构的框架,磷酸镁水泥的抗压强度快速提高。水化8 h后MKP生成量增长的幅度下降,磷酸镁水泥抗压强度的提高主要源于MKP晶体的联结。

关键词 无机非金属材料磷酸镁水泥水化动力学水化机理    
Abstract

The hydration heat release behavior of magnesium phosphate cement (MPC) was investigated by isothermal calorimeter. Results show that according to the feature of reaction processes, the hydration of MPC could be divided into five periods, such as the initiation, dissolution of MgO, growth of Mg(H2O)62+, accelerating growth of MgKPO4·6H2O (MKP), as well as decelerating growth and stable period of MKP. Meanwhile, the activation energy of each stage was acquired by Arrhenius formula. The hydration of MPC needed to be excited by the acidic environment. With the extend of hydration time, H+ was consumed in the hydration system, and then the hydration system became alkaline gradually because of the slightly soluble nature and hydrolysis of MgO in water. In the early hydration stage of MPC the hydration product MKP crystallites grew and interconnected rapidly, which formed the frame of the whole structure of MPC and the compressive strength of MPC increased rapidly. After 8h of hydration, the growth rate of MKP decreased significantly, whilst the increase of compressive strength of MPC mainly depended on the integrity of interconnection of MKP crystallites.

Key wordsinorganic non-metallic materials    magnesium phosphate cement    hydration    kinetics    hydration mechanism
收稿日期: 2017-04-07     
基金资助:资助项目 国家自然科学基金(51272283),重庆市自然科学基金(cstc2012jjB50009)
作者简介:

作者简介 戴丰乐,男,1992年生, 硕士

Oxide MgO SiO2 CaO Fe2O3 Al2O3 SO3 P2O5 TiO2 Other
Content 88.18 7.23 2.20 0.68 1.31 0.08 0.11 0.13 0.08
表1  重烧氧化镁的化学成分
图1  磷酸镁水泥的水化放热特征曲线
图2  293 K时的累计放热量和Knudsen公式拟合效果
Stage Stage B Stage C Stage D Stage E Stage F
Kinetic factor N 0.630 1.243 1.384 1.363 2.028
Kinetic factor K 0.735 0.076 0.050 0.054 0.022
表2  293 K时阶段B-F的水化动力学参数
图3  293 K时阶段B-阶段F的拟合效果
Stage Kinetic factor
N at 303 K
Kinetic factor
K at 303 K
Activation energy
/kg·mol-1
Stage B 0.628 0.990 21.99
Stage C 1.209 0.130 39.94
Stage D 1.474 0.064 16.93
Stage E 1.474 0.068 16.99
Stage F 2.153 0.030 21.39
表3  303 K时阶段B-F的水化动力学参数和表观活化能
图4  lnK与1/T的关系
图5  抗压强度与水化时间的关系
图6  不同水化龄期的XRD图谱
图7  各水化龄期的差热分析和质量损失
图8  不同水化龄期的微观形貌
图9  pH值的变化曲线
[1] Yang Q B, Zhang S Q, Wu X L.Deicer-scaling resistance of phosphate cement-based binder for rapid repair of concrete[J]. Cem. Concr. Res., 2002, 32: 165
[2] Qiao F, Chau C K, Li Z J.Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Constr. Build. Mater., 2010, 24: 695
[3] Wang H T, Qian J S, Wang J G.Review of magnesia-phosphate cement[J]. Mater. Rev., 2005, 19(12): 46(汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005, 19(12): 46)
[4] Seehra S S, Gupta S, Kumar S.Rapid setting magnesium phosphate cement for quick repair of concrete pavements—characterisation and durability aspects[J]. Cem. Concr. Res., 1993, 23: 254
[5] Mestres G, Ginebra M P.Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomater., 2011, 7: 1853
[6] Klammert U, Vorndran E, Reuther T, et al.Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing[J]. J. Mater. Sci.: Mater. Med., 2010, 21: 2947
[7] Wagh A S, Singh D.Method for stabilizing low-level mixed wastes at room temperature[P]. U.S. Patent, 5645518, 1997.
[8] Graeser S, Postl W, Bojar H P, et al.Struvite-(K), KMgPO4·6H2O, the potassium equivalent of struvite-a new mineral[J]. Eur. J. Mineral., 2008, 20: 629
[9] Chang Y, Shi C J, Yang N, et al.Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J. Chin. Ceram. Soc., 2013, 41: 492(常远, 史才军, 杨楠等. 不同细度MgO对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013, 41: 492)
[10] Qiao F, Chau C K, Li Z J.Calorimetric study of magnesium potassium phosphate cement[J]. Mater. Struct., 2012, 45: 447
[11] Krstulovi? R, Dabi? P.A conceptual model of the cement hydration process[J]. Cem. Concr. Res., 2000, 30: 693
[12] Kondo R, Ueda S.Kinetics of hydration of cement [A]. 5th International Conference on the Chemistry of Cement[C]. Sess II-4. Tokyo, 1968: 203
[13] Knudsen T.On particle size distribution in cement hydration [A]. Proceedings of 7th International Congress on the Chemistry of Cement[C]. Vol I. Paris, 1980: 170
[14] Dai F L, Qi Z Q, Wang H T, et al.The effect and mechanism of m(M)/m(P) ratio for the drying shrinkage of magnesium phosphate cement[J]. J. Funct. Mater., 2016, 47: 12134(戴丰乐, 齐召庆, 汪宏涛等. m(M)/m(P)比值对磷酸镁水泥干燥收缩的影响及机理研究[J]. 功能材料, 2016, 47: 12134)
[15] Wen J, Yu H F, Wu C Y, et al.Hydration kinetic and influencing parameters in hydration process of magnesium Oxychloride cement[J]. J. Chin. Ceram. Soc., 2013, 41: 588(文静, 余红发, 吴成友等. 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41: 588)
[16] Sugama T, Kukacka L E.Magnesium monophosphate cements derived from diammonium phosphate solutions[J]. Cem. Concr. Res., 1983, 13: 407
[17] Soudée E, Péra J.Mechanism of setting reaction in magnesia-phosphate cements[J]. Cem. Concr. Res., 2000, 30: 315
[18] Yu H F.Magnesium Oxychloride Cement and its Application [M]. Beijing: China Building Materials Industry Press, 1993: 219(余红发. 氯氧镁水泥及其应用 [M]. 北京: 中国建材工业出版社, 1993: 219)
[19] Yan P Y, Zheng F.Kinetics model for the hydration mechanism of cementitious materials[J]. J. Chin. Ceram. Soc., 2006, 34: 555(阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006, 34: 555)
[20] Fu X C, Shen W X, Yao T Y.Physical Chemistr [M]. 4th ed. Beijing: Higher Education Press, 1990(傅献彩, 沈文霞, 姚天扬. 物理化学[M]. 第4版. 北京: 高等教育出版社, 1990)
[21] You C, Qian J S, Qin J H, et al.Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC)[J]. Cem. Concr. Res., 2015, 78: 179
[22] Luo Y L.Experimental study on magnesium phosphate cement with high early strength and its applications [D]. Shanghai: Shanghai Jiao Tong University, 2010(雒亚莉. 新型早强磷酸镁水泥的试验研究和工程应用 [D]. 上海: 上海交通大学, 2010)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.