Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 388-394    DOI: 10.11901/1005.3093.2017.193
  研究论文 本期目录 | 过刊浏览 |
淬火温度对7Ni钢低温力学性能的影响
曹宏玮1,2, 罗兴宏2(), 刘实2
1 中国科学技术大学材料科学与工程学院 沈阳 110016
2 中国科学院核用材料与安全评价重点实验室 中国科学院金属研究所 沈阳 110016
Effect of Quenching Temperature on Cryogenic Mechanical Properties of a 7Ni Steel
Hongwei CAO1,2, Xinghong LUO2(), Shi LIU2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China
引用本文:

曹宏玮, 罗兴宏, 刘实. 淬火温度对7Ni钢低温力学性能的影响[J]. 材料研究学报, 2018, 32(5): 388-394.
Hongwei CAO, Xinghong LUO, Shi LIU. Effect of Quenching Temperature on Cryogenic Mechanical Properties of a 7Ni Steel[J]. Chinese Journal of Materials Research, 2018, 32(5): 388-394.

全文: PDF(4788 KB)   HTML
摘要: 

使用OM、SEM、TEM和XRD等手段观察并表征在不同温度淬火的7Ni钢的组织形貌和逆转奥氏体含量的变化,研究了淬火温度对7Ni钢的低温强度和低温韧性的影响。结果表明:当淬火温度从830℃提高到930℃时钢的低温韧性急剧下降,低温抗拉强度和屈服强度明显降低。同时,随着淬火温度的提高延伸率下降,与低温强度的变化趋势基本一致。在830℃淬火的试验钢,原奥氏体晶粒和马氏体板条束最为细小。而当淬火温度超过830℃时钢中的原奥氏体晶粒和马氏体板条束都显著长大,钢的低温强度和低温韧性随着晶粒尺寸与板条束宽度的增大而下降,粗化的组织对钢的低温强度与低温韧性都有不利的影响。随着淬火温度的提高钢中的逆转奥氏体含量基本上呈下降趋势,在830℃淬火的试验钢中逆转奥氏体含量最高,其低温冲击功也最高。

关键词 金属材料7Ni钢淬火温度低温力学性能微观组织逆转奥氏体    
Abstract

The effect of quenching temperature on cryogenic strength and toughness of a 7Ni steel was investigated. The microstructure and volume fraction of reversed austenite were characterized by means of OM, SEM, TEM, XRD. Results show that cryogenic toughness of the steel sharply decreased when quenching temperature increased from 830℃ to 930℃. And cryogenic tensile strength as well as yield strength were obviously decreased with increasing quenching temperature. What's more, elongation also decreased at higher quenching temperature, and has a consistent variation tendency with cryogenic strength. Grains of prior austenite and martensite packets were fine in the steel quenched at 830℃, but grains and packets grew significantly at higher quenching temperature. Cryogenic strength and toughness decreased with growth of grain sizes and packet width. Coarsen microstructure has a adverse effect on cryogenic strength and toughness. The amount of reversed austenite showed downtrend basically by increasing quenching temperature. The steel quenched at 830℃ has a maximum of reversed austenite amount and impact energy.

Key wordsmetallic materials    7Ni steel    quenching temperature    cryogenic mechanical properties    microstructure    reversed austenite
收稿日期: 2017-03-17     
作者简介:

作者简介 曹宏玮,男,1989年生,博士生

C Si Mn P S Ni Fe
0.04 0.05 0.83 0.009 <0.005 7.49 Bal.
表1  试验钢的化学成分
图1  淬火温度对试验钢低温拉伸性能的影响
图2  淬火温度对试验钢低温韧性的影响
图3  淬火温度不同的试验钢的低温冲击断口形貌
图4  淬火温度不同的试验钢的原奥氏体晶粒
图5  淬火温度不同的试验钢的微观组织
图6  淬火温度对试验钢原奥氏体晶粒尺寸和马氏体板条束宽度的影响
图7  淬火温度对逆转奥氏体含量的影响
图8  淬火温度不同的试验钢的TEM图像及其衍射花样
[1] Liu J L.Analyses of development status of Chinese LNG[J]. China Chemical Trade, 2015, 34: 42(刘佳丽. 中国LNG发展现状分析[J]. 中国化工贸易, 2015,34:42)
[2] F. Shaikh, Q. Ji, Y. Fan.Assessing the stability of the LNG supply in the Asia Pacific region[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 376
[3] Maki Yamashita, David Knowels, Masahiko Mitsumoto, et al.Development of 7%Ni-TMCP steel plate for LNG storage tanks [A], Proceedings of the Asme Pressure Vessels and Piping Conference[C]. New York, 2012
[4] Zhu X Y, Liu D S.Microstructure and mechanical properties of a low carbon 7.7%Ni steel subjected to intercritical quenching[J]. Iron and Steel, 2013, 48(11):72(朱绪祥, 刘东升. 低C含7.7%Ni低温钢经两相区淬火后的组织性能[J]. 钢铁,2013,48(11):72)
[5] Yang Y H, Cai Q W, Wu H B, et al.Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two phase region heat treatment[J]. Acta Metallurgica Sinica, 2009, 45(3): 270(杨跃辉, 蔡庆伍, 武会宾等. 两相区热处理中逆转变奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270)
[6] J. I. Kim, C. K. Syn, J. W. Morris.Microstructural sources of toughness in QLT-Treated 5.5Ni cryogenic steel[J]. Metallurgical Transactions A, 1983, 14(1):93
[7] Lu J, Zeng X Q, Ding W J.The hall-petch relationship[J]. Light Metals, 2008, 8:59(路君, 曾小勤, 丁文江. 晶粒度与合金强度关系[J]. 轻金属, 2008, 8: 59)
[8] Yong Q L.The second phase of steel [M]. Beijing: Metallurgical Industry Press, 2006(雍岐龙. 钢铁材料中的第二相 [M]. 北京:冶金工业出版社, 2006)
[9] T. Swarr, G. Krauss.The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy[J]. Metallurgical Transactions A, 1976, 7(1): 41
[10] Liang Y, Xiang S, Liang Y L, et al.Effect of prior austenite grain size on microstructure and toughness of pearlitic steel[J]. Materials Review, 2017, 31(1): 77(梁宇, 向嵩, 梁益龙等. 原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响[J]. 材料导报, 2017, 31(1): 77)
[11] C. K. Syn, J. W. Morris, S. Jin.Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement[J]. Metallurgical Transactions A, 1976, 7(12): 1827
[12] M. J. Roberts.Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metallurgical Transactions, 1970, 1(12): 3287
[13] Wang C F, Wang M Q, Shi J, et al.Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science & Technology, 2007, 23(5): 659
[14] Zhang K, Tang D, Wu H B.Effect of reversed austenite on impact toughness of 9Ni steel at low temperature[J]. Material & Heat Treatment, 2012, 41(8): 177(张坤, 唐荻, 武会宾. 逆转变奥氏体对9Ni钢低温冲击韧度的影响[J]. 材料热处理技术, 2012, 41(8): 177)
[15] Hu J, Du L X, Sun G S, et al.The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel[J]. Scripta Materialia, 2015, 104: 87
[16] Zhang F T, Wang J Y, Guo Y Y.Reversed austenite and cryogenic toughness of 9Ni steel[J]. Acta Metallurgica Sinica, 1984, 20(6): 405(张弗天, 王景韫, 郭蕴宜. Ni9钢中的回转奥氏体与低温韧性[J]. 金属学报, 1984, 20(6): 405)
[17] Yang Y H, Zhang X J, Yuan S Q, et al.Effect of quenching microstructure on the formation of reversed austenite in 9Ni steel[J]. Materials Science Forum, 2014, 788: 277
[18] Y. K. Lee, H. C. Shin, Y. C. Jang, et al.Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel[J]. Scripta Materialia, 2002, 47(12): 805
[19] Li Y M, Sun X J, Yong Q L, et al.Effect of tempering temperature on microstructure and mechanical properties of 5.5Ni cryogenic steel[J]. Chinese Journal of Materials Research, 2015, 29(11): 860(李员妹, 孙新军, 雍岐龙等. 回火温度对5.5Ni低温钢组织和力学性能的影响[J]. 材料研究学报, 2015, 29(11): 860)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.