Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 357-364    DOI: 10.11901/1005.3093.2017.181
  研究论文 本期目录 | 过刊浏览 |
拉拔和轧制变形铝导线的结构演化及力学与导电性能
罗雪梅1, 余虹云2, 李瑞2, 宋竹满1, 王强1, 张哲峰1, 张广平1()
1 中国科学院金属研究所 沈阳 110016
2 国家电网公司电力器材安全性能检测技术实验室 浙江华电器材检测研究所 杭州 310015
Microstructural Evolution and Mechanical- and Electrical-Property of Cold-Drawn and -Rolled Electrical Aluminum Wires
Xuemei LUO1, Hongyun YU2, Rui LI2, Zuman SONG1, Qiang WANG1, Zhefeng ZHANG1, Guangping ZHANG1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 SGCC-Testing Technology Lab of Electrical Equipment Safety Performance, Zhejiang Huadian Equipment Testing Institute, Hangzhou 310015, China
引用本文:

罗雪梅, 余虹云, 李瑞, 宋竹满, 王强, 张哲峰, 张广平. 拉拔和轧制变形铝导线的结构演化及力学与导电性能[J]. 材料研究学报, 2018, 32(5): 357-364.
Xuemei LUO, Hongyun YU, Rui LI, Zuman SONG, Qiang WANG, Zhefeng ZHANG, Guangping ZHANG. Microstructural Evolution and Mechanical- and Electrical-Property of Cold-Drawn and -Rolled Electrical Aluminum Wires[J]. Chinese Journal of Materials Research, 2018, 32(5): 357-364.

全文: PDF(2395 KB)   HTML
摘要: 

对工业用A4纯铝进行拉拔和轧制两种塑性变形,研究了纯铝导线材料的微观结构演化、强度和导电率。结果表明:在变形量较小时拉拔变形和轧制变形后纯铝铝导线主要由拉长晶粒组成,这些拉长晶粒由位错亚结构组成的小角晶界组成;在相近的等效应变变形情况下,轧制样品中高角晶界的比例更高。拉拔变形后样品的强度和塑性均优于轧制变形后的样品。拉拔变形使材料具有更高强度和导电率。探讨了材料的导电性与形变强化间的关系。

关键词 金属材料拉拔轧制力学性能导电率    
Abstract

Commercial A4 pure aluminum electrical wire was subjected to cold drawing and cold rolling respectively, and then their microstructure, strength and electrical conductivity were investigated systematically. Results show that in the case of less deformation, the microstructure both of the cold drawn and rolled aluminum electrical wires consists of elongated grains with low-angle grain boundaries and dislocation substructures; In case of similar equivalent strain deformation, there exists higher percentage of high-angle grain boundaries in the cold-rolled wires. While the strength and ductility of the cold drawn wires are higher than that of the cold rolled ones. Finally, the relationship between deformation strengthening and conductivity of the pure aluminum was elucidated.

Key wordsmetallic materials    aluminum    wire drawing    rolling    mechanical properties    electronic conductivity
收稿日期: 2017-03-10     
基金资助:资助项目 国家电网公司科技科学技术项目(52110416001z),国家自然科学基金(51601198)
作者简介:

作者简介 罗雪梅,女,1986年生,博士

Al Si Fe Cu Mn Mg Cr Ni Zn
99.6 0.11 0.25 0.01 0.06
表1  A4工业纯铝杆化学成分(质量分数,%)
Pass 0 1 2 3 4 5 6 7 8
D/mm 9.50 8.10 6.98 6.58 5.80 5.28 4.56 3.97 3.42
RA/% 9.50 26.7 46.1 52.1 62.7 69.1 76.9 82.5 87.4
εWD 9.5 0.3 0.6 0.7 1.0 1.2 1.5 1.7 2.0
表2  工业用纯铝导线拉拔道次与厚度、变形量、等效应变之间的关系
图1  轧制铝试样的单轴拉伸试样尺寸图
图2  拉拔和轧制变形后铝试样的EBSD取向成像图
图3  拉拔和轧制变形后铝试样的晶界取向差分布图
图4  不同变形量轧制和拉拔铝试样的高角晶界体积分数
图5  不同拉拔和轧制变形量铝试样的平均Schmid因子
图6  不同拉拔和轧制变形量铝试样的屈服强度和均匀伸长率随等效应变量的变化规律
图7  不同变形量铝试样的导电率随等效应变量的变化规律
图8  拉拔变形铝试样实验测得总电阻率(实心方形)和根据方程(9)计算的晶界电阻率率(空心方形)随等效应变量的变化规律
图9  拉拔和轧制变形铝试样导线的强度-导电率关系
[1] Kiessling F, Nefzger P, Kaintzyk U, et al.Overhead Power Lines: Planning, Design, Construction[M]. Springer, Berlin Heidelberg, 2003
[2] Zhang G P, Li M L, Wu X M, et al.Research Progress on Effect of Length Scale on Electrical Resistivity of Metals[J]. Chin J Mater Res, 2014, 28(2): 81(张广平, 李孟林, 吴细毛等. 尺度对金属材料电阻率影响的研究进展[J]. 材料研究学报, 2014, 28(2): 81)
[3] Wu X M, He Z H, Li C H, et al.Evolution of Drawing Texture for A6 Aluminum Conductor[J]. Chin J Mater Res, 2015, 29(7): 555)(吴细毛, 和正华, 李春和等. 在A6电工铝导线的冷拉拔过程中织构的演变[J]. 材料研究学报. 2015, 29(7): 555)
[4] Wang W D.Principle and Application of Cable Technology [M]. Beijing: China Machine Press, 2010(王卫东. 电缆工艺技术原理及应用 [M]. 北京: 机械工业出版社, 2011)
[5] Hurley P J, Humphreys F J.The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy[J]. Actar Mater, 2003, 51(4):
[6] Hanazaki K, Shigeiri N, Tsuji N.Change in microstructures and mechanical properties during deep wire drawing of copper[J]. Mater Sci Eng, A, 2010, 527(21-22): 5699
[7] Saito Y, Tsuji N, Utsunomiya H, et al., Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr Mater, 1998, 39(9):
[8] Park K T, Kwon H J, Kim W J, et al., Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process[J]. Mater Sci Eng A, 2001, 316(1-2): 145
[9] Xing Z P, Kang S B, Kim H W.Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process[J]. Metall Mater Trans A, 2002, 33(5): 1521
[10] Segal V M, Ferrasse S, Alford F.Tensile testing of ultra fine grained metals[J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2006, 422(1-2): 321
[11] Li S, Gazder A A, Beyerlein I J, et al., Microstructure and texture evolution during equal channel angular extrusion of interstitial-free steel: Effects of die angle and processing route[J]. Acta Mater, 2007, 55(3): 1017
[12] Lu L.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422
[13] Liu X C, Zhang H W, Lu K.Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342(6156): 337
[14] Wang Q, Wu X M, Li C H, et al.Mechanical Properties of A6 Aluminum Conductor in Drawing Process[J]. Chin J Mater Res, 2013, 27(03): 231(王强, 吴细毛, 李春和等. 拉拔工艺对A6工业纯铝导线力学性能的影响[J]. 材料研究学报, 2013,27(03):231)
[15] Hosseini S A, Manesh H D.High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process[J]. Mater Design, 2009, 30(8): 2911
[16] Habibi A, Ketabchi M, Eskandarzadeh M.Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process[J]. J Mater Process Technol, 2011, 211(6): 1085
[17] ?etinarslan C S.Effect of cold plastic deformation on electrical conductivity of various materials[J]. Mater Design, 2009, 30(3): 671
[18] Ko Y G, Namgung S, Lee B U, et al., Mechanical and electrical responses of nanostructured Cu-3wt%Ag alloy fabricated by ECAP and cold rolling[J]. J Alloy Compd, 2010, 504(S448)
[19] Han K, Embury J D, Sims J R, et al., The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J]. Mater Sci Eng, A, 1999, 267(1): 99
[20] Takata N, Lee S-H, Tsuji N.Ultrafine grained copper alloy sheets having both high strength and high electric conductivity[J]. Mater Lett, 2009, 63(21): 1757
[21] Sakai Y, Inoue K, Maeda H.New high-strength, high-conductivity Cu-Ag alloy sheets[J]. Acta Metall. Mater., 1995, 43(4): 1517
[22] Raygan S, Mofrad H E, Pourabdoli M, et al., Effect of rolling and annealing processes on the hardness and electrical conductivity values of Cu-13.5%Mn-4%Ni alloy[J]. J Mater Process Technol, 2011, 211(11): 1810
[23] Huang C Q.The application and development of aluminum and aluminum alloy for electrical purposes in cable field[J]. Electric Wire Cable, 2013, (02): 4(黄崇祺. 电工用铝和铝合金在电缆工业中的应用与前景[J]. 电线电缆, 2013, (02): 4)
[24] Kamikawa N, Huang X X, Tsuji N, et al., Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater, 2009, 57(14): 4198
[25] Hughes D A, Hansen N.Microstructure and strength of nickel at large strains[J]. Acta Mater, 2000, 48(11): 2985
[26] Kamikawa N, Huang X, Tsuji N, et al., Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater, 2009, 57(14): 4198
[27] Hansen N.Hall-Petch relation and boundary strengthening[J]. Scripta Mater, 2004, 51(8): 801
[28] Hansen N.Boundary strengthening in undeformed and deformed polycrystals[J]. Mater Sci Eng, A, 2005, 409(1-2):
[29] Matthiessen A, Vogt C. On the influence of temperature on the electric conducting-power of alloys [J]. Philos Trans R Soc London, 1864, 154: 167
[30] Murashkin M Y, Sabirov I, Sauvage X, et al., Nanostructured Al and Cu alloys with superior strength and electrical conductivity[J]. J Mater Sci, 2016, 51(1): 33
[31] Botcharova E, Freudenberger J, Schultz L.Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Mater, 2006, 54(12): 3333
[32] Andrews P V, West M B, Robeson C R.The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium[J]. Philos Mag, 1969, 19(161): 887
[33] Brown R A.A dislocation model of grain boundary electrical resistivity[J]. Journal of Physics F: Metal Physics, 1977, 7(8): 1477
[34] Nakamichi I. Electrical resistivity and grain boundaries in metals[J]. Mater Sci Forum, 1996, 207-209(1): 47
[35] Hong S I, Hill M A.Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J]. Mater Sci Eng, A, 1999, 264(1-2): 151
[36] Mayadas A F, Shatzkes M.Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces[J]. Phys Rev B, 1970, 1(4): 1382
[37] César M, Liu D, Gall D, et al., Calculated Resistances of Single Grain Boundaries in Copper[J]. Phys Rev Appl, 2014, 2(4): 044007
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.