Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 395-400    DOI: 10.11901/1005.3093.2017.176
  研究论文 本期目录 | 过刊浏览 |
Cr对Ni3Si合金摩擦学性能的影响
牛牧野1,2, 张兴华1,2(), 赵海成1, 夏宇1, 刘佳杰1
1 江苏科技大学材料科学与工程学院 镇江 212003
2 中国科学院兰州化学物理研究所 固体润滑国家重点实验室 兰州 730000
Effect of Cr Addition on Tribological Properties of Ni3Si Alloys
Muye NIU1,2, Xinghua ZHANG1,2(), Haicheng ZHAO1, Yu XIA1, Jiajie LIU1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
引用本文:

牛牧野, 张兴华, 赵海成, 夏宇, 刘佳杰. Cr对Ni3Si合金摩擦学性能的影响[J]. 材料研究学报, 2018, 32(5): 395-400.
Muye NIU, Xinghua ZHANG, Haicheng ZHAO, Yu XIA, Jiajie LIU. Effect of Cr Addition on Tribological Properties of Ni3Si Alloys[J]. Chinese Journal of Materials Research, 2018, 32(5): 395-400.

全文: PDF(3814 KB)   HTML
摘要: 

用电弧熔炼法制备Ni3Si合金,添加Cr和痕量B以改善合金的塑性,研究了Ni3Si合金的显微组织、相组成以及摩擦学性能。结果表明,纯Ni3Si合金主要由β1-Ni3Si相和γ-Ni31Si12相组成;添加质量分数为5%的Cr使合金转变成γ-Ni31Si12相和α-Ni相;进一步提高Cr含量使合金的组成为γ-Ni31Si12和Cr3Ni5Si2相。添加Cr使合金的硬度呈现上升趋势,其中含10%Cr的合金硬度最高,约为700 HV;在干滑动摩擦过程中合金的摩擦系数为0.5左右,磨损率均远低于316不锈钢,其中含5%Cr的合金磨损率最低;随着载荷的增加Ni3Si合金和含Cr 5%的镍硅合金,其磨损机理由磨粒磨损转变成粘着磨损,添加10% Cr的镍硅合金的磨损机理为疲劳磨损。

关键词 金属材料金属间化合物电弧熔炼显微结构摩擦学性能    
Abstract

Ni3Si alloys were microalloyed via arc melting with small amounts of Cr and B for improving their mechanical properties. The microstructure, phase composition and tribological property of Ni3Si alloys were investigated. Results show that Ni3Si alloy was mainly composed of β1-Ni3Si and γ-Ni31Si12 phases; with the increasing Cr-conten the phase composition was changed to γ-Ni31Si12 and α-Ni, and then changed to γ-Ni31Si12 and Cr3Ni5Si2; the microhardness increased along with the increasing Cr-content; during the dry sliding friction the friction coefficients of the alloys were about 0.5 and their wear rates were much lower than that of 316 stainless steel. The optimum addition of Cr for the best tribological property of the Ni3Si alloy was 5% Cr (in mass fraction). With the increasing load the wear mechanisms of Ni3Si alloys with 0% and 5% Cr exhibited significant change from abrasive wear to adhesive wear. The wear mechanisms of the alloys with 10% Cr were all the fatigue wear within the range of the test load.

Key wordsmetallic materials    intermetallic compounds    arc melting    microstructures    tribological properties
收稿日期: 2017-03-07     
基金资助:资助项目 江苏省高校自然科学基金(15KJB460007)、国家自然科学基金(51505199)和江苏省自然科学基金(BK20140511)
作者简介:

作者简介 牛牧野,男,1982年生,讲师

Powder Size/μm Purity/% Impurity
Ni 48 99.8 Co, Cu, Fe, Ca, Mn, C
Si 48 99.5 Fe, Cu, Zn, Sb
B 13 95 Fe, Cu, Cr, Zn, Al, Ca
Cr 45 99.8 Al, Fe, Cu, Pb, Si, C
表1  元素粉末的化学组成
图1  Cr含量为0、5%和10%的Ni3Si合金的表面形貌
图2  Ni3Si合金的XRD图谱
图3  Ni3Si合金的显微硬度
图4  在0.30 m/s条件下Ni3Si合金和316不锈钢的摩擦系数随载荷的变化
图5  在0.30 m/s条件下Ni3Si合金和316不锈钢的磨损率随载荷的变化
图6  Ni3Si合金在0.30 m/s和5 N条件下磨斑的扫描电镜照片
图7  Ni3Si合金在0.30 m/s和10 N条件下磨斑的扫描电镜照片
图8  Ni3Si合金在0.30 m/s,15 N条件下的磨斑扫描电镜照片
[1] Kittl J A, Pawlak M A, Lauwers A, et al.Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates[J]. IEEE Electron Device Lett., 2006, 27(1): 34
[2] Song Y, Jin S.Synthesis and properties of single-crystal β3-Ni3Si nanowires[J]. Appl. Phys. Lett., 2007, 90(17): 173122
[3] Sukidi N, Koch C C, Liu C T.The oxidation of Ni3Si-base alloys[J]. Mater. Sci. Eng. A, 1995, 191(1-2): 223
[4] Takasugi T, Kawai H,Kaneno Y. The effect of Cr addition on mechanical and chemical properties of Ni3Si alloys [J]. Mater. Sci. Eng. A, 2002, 329-331: 446
[5] Bi Q L, La P Q, Liu W M, et al.Microstructure and properties of Ni3Si alloyed with Cr fabricated by self-propagating high-temperature synthesis casting route[J]. Metall. Mater. Trans. A, 2005, 36: 1301
[6] Takasugi T, Suenaga H,Izumi O.Environmental effect on mechanical properties of recrystallized L12-type Ni3(Si,Ti) intermetallics[J]. J. Mater. Sci., 1991, 26(5): 1179
[7] Liu C T,Oliver W C.Environmental embrittlement and grain-boundary fracture in Ni3Si[J]. Scripta Metall. Mater., 1991, 25(8): 1933
[8] Zhu J H, Liu C T.Intermediate-temperature mechanical properties of Ni-Si alloys: oxygen embrittlement and its remedies[J]. Intermetallics, 2002, 10(4): 309
[9] Cui C, Xue T, Jin Y, et al.Tensile and fatigue behaviour of Ni-Ni3Si eutectic in situ composites[J]. Mater. Sci. Technol., 2016, 32(10): 1053
[10] Takasugi T, Hanada S. The influence of second-phase dispersion on environmental embrittlement of Ni3(Si, Ti) alloys [J]. MRS Proceedings, 1998, 552: KK6.5.1
[11] Takasugi T, Kawai H, Kaneno Y.Mechanical and chemical properties of Ni3Si and Ni3(Si,Ti) alloys multiphased by chromium addition[J]. Mater. Sci. Technol., 2001, 17: 671
[12] Takasugi T,Yoshida M.The effect of Nb addition on microstructure and mechanical properties of Ni3(Si,Ti) alloy[J]. J. Mater. Sci., 2001, 36(3): 643
[13] Van Dyck S, Delaey L, Froyen L, et al.Reactive powder metallurgy of Ni3Si-based alloys[J]. Intermetallics, 1995, 3(4): 309
[14] Ahmad R, Cochrane R F, Mullis A M.The formation of regular αNi-γ(Ni31Si12) eutectic structures from undercooled Ni-25at.% Si melts[J]. Intermetallics, 2012, 22: 55
[15] Gladyshevskii E I,Borusevich L K.The Cr-Ni-Si Ternary System[J]. Russian J. Inorg. Chem., 1963, 8(8): 997
[16] Guard R W,Smith E A.Constitution of Ni-base Ternary Alloys, V. Nickel-Chromium-Silicon System[J]. J. Inst. Metals, 1960, 88: 373
[17] Ghosh G. Cr-Ni-Si (Chromium-Nickel-Silicon)[M]// Non-Ferrous Metal Systems. Part 3. Springer Berlin Heidelberg, 2007: 229
[18] Cui C, Zhang J, Wu K, et al.Microstructure and properties of Ni-Ni3Si composites by directional solidification[J]. Physica B, 2012, 407(17): 3566
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.