Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (4): 315-320    DOI: 10.11901/1005.3093.2017.170
  研究论文 本期目录 | 过刊浏览 |
晶粒取向及有序相对Fe-6.5%Si合金丝材塑性的影响
温识博1, 杨伟2, 石祥聚1, 梁永锋1, 叶丰1()
1 北京科技大学 新金属材料国家重点实验室 北京 100083
2 沙钢钢铁研究院 江苏 215625
Effect of Grain Orientation and Ordered Phase on Ductility of Fe-6.5%Si Alloy Wires
Shibo WEN1, Wei YANG2, Xiangju SHI1, Yongfeng LIANG1, Feng YE1()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Research of Iron and Steel, Shasteel, Jiangsu 215625, China
引用本文:

温识博, 杨伟, 石祥聚, 梁永锋, 叶丰. 晶粒取向及有序相对Fe-6.5%Si合金丝材塑性的影响[J]. 材料研究学报, 2018, 32(4): 315-320.
Shibo WEN, Wei YANG, Xiangju SHI, Yongfeng LIANG, Feng YE. Effect of Grain Orientation and Ordered Phase on Ductility of Fe-6.5%Si Alloy Wires[J]. Chinese Journal of Materials Research, 2018, 32(4): 315-320.

全文: PDF(3685 KB)   HTML
摘要: 

比较了Fe-6.5%Si(质量分数)合金的拉拔丝材与轧制板材的塑性,板材室温塑性最高为0.8%,丝材均在1%以上,最高为5.6%。研究了两者的显微组织、有序结构和形变织构,发现组织状态对两者的塑性的差异影响不大,有序结构和形变织构起重要作用。其主要原因,是丝材中有序相B2发生变化及形成单一的<110>丝织构。

关键词 金属材料Fe-6.5%Si室温塑性显微组织有序结构形变织构    
Abstract

It reveals that the highest room-temperature ductility of the rolled sheets of Fe-6.5%Si (mass fraction) alloy is 0.8%, while the average tensile elongations of hot drawn wires are more than 1%. Furthermore, the maximum tensile elongation of the wires reaches 5.6%. By analyzing the microstructure, ordered structure, and deformation texture of the alloy, it follows that the ordered structure and deformation texture play important roles in improving the plasticity. This can be attributed to the structural change of B2 ordered structure and a strong <110> fiber texture of the wires.

Key wordsmetallic materials    Fe-6.5%Si    ductility    microstructure    ordered structure    deformation texture
收稿日期: 2017-03-10     
基金资助:资助项目 国家自然科学基金(51471031,U1660115),新金属材料国家重点实验室自主课题(2016Z-17)
作者简介:

作者简介 温识博,男,1988年生,博士

图1  Fe-6.5%Si合金板材和丝材的室温拉伸应力—应变曲线
图2  Fe-6.5%Si合金0.2 mm板材热处理前后的显微组织
图3  Fe-6.5%Si合金丝材的显微组织
图4  Fe-6.5%Si合金0.2 mm板材的[011]晶带轴衍射谱及明场像
图5  Fe-6.5%Si合金0.2 mm板材热处理后的[011]晶带轴衍射谱及明暗场像
图6  Fe-6.5%Si合金1.6 mm丝材的[011]晶带轴衍射谱及明暗场像
图7  Fe-6.5%Si硅钢1.6 mm丝材的取向分布图
图8  Fe-6.5%Si硅钢1.15 mm丝材热处理后的取向分布图
[1] Tian M B.Magnetic Materials [M]. Beijing: Tsinghua University Press, 2001(田民波. 磁性材料[M]. 北京: 清华大学出版社, 2001)
[2] He Z Z.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012(何忠治. 电工钢[M]. 北京: 冶金工业出版社, 2012)
[3] Arai K I, Ishiyama K J.Recent developments of new soft magnetic materials[J]. J. Magn. Magn. Mater., 1994, 133(1-3): 233
[4] Littmann M F.Iron and silicon-iron alloys[J]. IEEE. T. Magn., 1971, 7(1): 48
[5] Bozorth R M. Ferromagnetism [M]. New York: D. Van Nostrand company, Ins.1951, ch.4, 67
[6] Raviprasad K, Chattopadhyay K.The influence of critical points and structure and microstructural evolution in iron rich Fe-Si alloys[J]. Acta Metall. Mater., 1993, 41(2): 609
[7] Yelsukov Y P, Barinov V A, Lapina T P, et al.Ordering kinetics in Fe3Al alloy[J]. Phys. Met. Metalloar+., 1985, 60(5): 83
[8] Fish G E, Chang C F, Bye R.Frequency dependence of core loss in rapidly quenched Fe-6.5wt.?%Si[J]. J. Appl. Phys., 1988, 64(10): 5370
[9] Takada Y, Abe M, Masuda S, et al.Commercial scale production of Fe-6.5wt.% Si sheet and its magnetic properties[J]. J. Appl. Phys., 1988, 64(10): 5367
[10] Silva M C A, Bolfarini C, Kiminami C S.Microstructure and magnetic properties of Fe-6.5wt%Si alloy obtained by spray forming process [J]. Mater.Sci.Forum.,2005, 498-499: 111
[11] Li R, Shen Q, Zhang L, et al.Magnetic properties of high silicon iron sheet fabricated by direct powder rolling[J]. J. Magn. Magn. Mater., 2004, 281: 135
[12] Ros-Ya?ez T, Houbaert Y, Rodriguez VG.High-silicon steel produced by hot dipping and diffusion annealing[J]. J. Appl. Phys., 2002, 91: 7857
[13] Liang Y F, Ye F, Lin J P, et al.Effect of annealing temperature on magnetic properties of cold rolled high silicon steel thin sheet[J]. J. Alloy. Compd., 2010, 491(1-2): 268
[14] Yang W, Li H, Yang K, et al.Hot drawn Fe-6.5wt.% Si wires with good ductility[J]. Mat. Sci. Eng B-Solid., 2014, 186:79
[15] Yoshimi K, Terashima H, Hanada S.Effect of APB type on tensile properties of Cr added Fe3Al with D03structure[J]. Mat. Sci. Eng A-Struct.,1995, 194(1):53
[16] Yang W.Fabrication and properties of wires of Fe-6.5%Si electrical steel [D]. Beijing: University of Science and Technology Beijing, 2013(杨伟. Fe-6.5%Si电工钢丝材的制备及性能[D]. 北京: 北京科技大学, 2013)
[17] Fang X S.Fabrication and texture research of cold rolled6.5wt.%Si electrical steel with large size and high magnetic induction[D]. Beijing: University of Science and Technology Beijing, 2012(房现石. 高磁感大尺寸6.5wt.%Si电工钢薄板冷轧制备及织构研究[D]. 北京: 北京科技大学, 2012)
[18] Liang Y F, Ye F, Lin J P, et al.Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5wt%Si alloy sheet[J]. Sci. China. Tech. Sci., 2010, 53(4): 1008
[19] Shin J S, Lee Z H, Lee T D, et al.The effect of casting method and heat treating condition on cold workability of high-Si electrical steel[J]. Scripta Mater., 2001, 45(6): 725
[20] Li H, Liang Y F, Ye F, et al.Effect of grain size and ordering degree on mechanical properties of Fe-6.5wt%Si alloy[J]. Fundamental Problems of Modern Material Science, 2015, 12(2)
[21] Li H, Liang Y F, Ye F.Effect of heat treatment on ordered structures and mechanical properties of Fe-6.5wt%Si alloy[J]. Mater. Trans., 2015, 56(5): 759
[22] Fu H D, Zhang Z H, Jiang Y B, et al.Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5 wt% Si alloy[J]. J. Alloy. Compd.,2016, 689: 307
[23] Marcinkowski M J, Brown N.Theory and direct observation of dislocations in the Fe3Al superlattices[J]. Acta. Metall., 1961, 9(8): 764
[24] Marcinkowski M J, Fisher R M.Theoretical analysis of plastic deformation in superlattices based on the body-centered cubic structure[J]. J. Appl. Phys., 1963, 34:2135
[25] Li H, Liang Y F, He R Q, et al.Ordered structure and mechanical properties of Fe-6.5%Si alloy fabricated by rapid quenching[J]. Acta Metall. Sin., 2013, 49(11): 1452(李慧, 梁永锋, 贺睿琦等. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49(11): 1452)
[26] Cheung J T, Morgan P E D, Lowndes D H, et al. Structural and electrical properties of La0.5Sr0.5CoO3 epitaxial films[J]. Appl. Phys. Lett., 1993, 62(17): 2045
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.