Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 481-488    DOI: 10.11901/1005.3093.2017.159
  研究论文 本期目录 | 过刊浏览 |
11.5CrNbTi和15Cr0.5MoNbTi超纯铁素体不锈钢的循环蠕变行为
应彩虹1,2, 陈立佳1(), 刘天龙1, 郭连权2
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 沈阳工业大学理学院 沈阳 110870
Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels
Caihong YING1,2, Lijia CHEN1(), Tianlong LIU1, Lianquan GUO2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Science, Shenyang University of Technology, Shenyang 110870, China
引用本文:

应彩虹, 陈立佳, 刘天龙, 郭连权. 11.5CrNbTi和15Cr0.5MoNbTi超纯铁素体不锈钢的循环蠕变行为[J]. 材料研究学报, 2017, 31(7): 481-488.
Caihong YING, Lijia CHEN, Tianlong LIU, Lianquan GUO. Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels[J]. Chinese Journal of Materials Research, 2017, 31(7): 481-488.

全文: PDF(7095 KB)   HTML
摘要: 

对11.5CrNbTi和15Cr0.5MoNbTi超纯铁素体不锈钢进行650℃应力控制循环蠕变实验,研究了最大外加应力处引入的保持时间对铁素体不锈钢的循环蠕变变形和断裂行为的影响。结果表明:保持时间的延长使这两种不锈钢的最小循环蠕变速率增大,循环蠕变寿命和循环断裂周次减少。在相同的条件下,15Cr0.5MoNbTi不锈钢的循环蠕变抗力优于11.5CrNbTi不锈钢。这两种不锈钢的循环蠕变断裂模式均为穿晶断裂,随着保持时间的延长断口表面的蠕变孔洞增多,蠕变损伤作用增强。这两种不锈钢循环蠕变后的微观组织均为亚晶,位错的滑移和交滑移是循环蠕变的主要变形机制。

关键词 金属材料超纯铁素体不锈钢循环蠕变保持时间断裂模式变形机制    
Abstract

Cyclic creep tests at 650°C for both 11.5CrNbTi and 15Cr0.5MoNbTi ultra pure ferritic stainless steels were conducted under the stress-controlled mode , the effect of hold time introduced at the maximum applied stress on the deformation and fracture behaviors of the ferritic stainless steels was investigated. The results show that with prolonging the hold time, the minimum cyclic creep rate increases, and the cyclic creep life and the cycle number to fracture decrease for both stainless steels. Under the same conditions, the cyclic creep resistance of the 15Cr0.5MoNbTi stainless steel is higher than that of the 11.5CrNbTi stainless steel. The cyclic creep fracture mode for two stainless steels is transgranular fracture. With prolonging the hold time, the quantity of creep voids increases and the effect of creep damage gets enhanced. The microstructures after the cyclic creep are composed of sub-grains. The deformation mechanism of cyclic creep is mainly the dislocation slip and cross slip.

Key wordsmetallic materials    ultra pure ferritic stainless steel    cyclic creep    hold time    fracture mode    deformation mechanism
收稿日期: 2017-03-02     
ZTFLH:  TG142  
基金资助:资助项目 国家自然科学基金(51134010)
作者简介:

作者简介 应彩虹,女,1977年生,博士生

Steel Cr Mo Nb Ti C N Ni Mn Si Fe
11.5CrNbTi 11.5 0.19 0.16 ≤0.030 ≤0.020 ≤0.3 ≤1.0 ≤1.0 Bal.
15Cr0.5MoNbTi 15 0.5 0.45 0.3 ≤0.030 ≤0.020 ≤0.3 ≤1.2 ≤1.2 Bal.
表1  铁素体不锈钢的化学成分(质量分数,%)
图1  循环蠕变试样的几何尺寸(mm)
图2  循环蠕变实验对应的循环波形
图3  11.5CrNbTi和15Cr0.5MoNbTi不锈钢的循环蠕变曲线
Material σmax/ MPa th/min ε˙min/×10-4h-1 tf/h Nf/cycle
11.5CrNbTi 60 10 3.57 253.0 1508
30 3.72 171.9 343
60 4.19 131.2 131
70 10 7.49 71.6 427
30 8.71 65.7 131
60 9.00 54.1 54
80 10 10.67 45.0 269
30 10.73 37.1 74
60 11.90 29.1 29
15Cr0.5MoNbTi 60 10 0.57 429.8 2562
30 1.14 378.1 756
60 1.82 252.5 252
70 10 1.98 201.6 1209
30 2.56 149.3 298
60 3.68 102.1 102
80 10 3.16 84.2 502
30 5.21 65.1 130
60 6.89 43.0 43
表2  11.5CrNbTi和15Cr0.5MoNbTi不锈钢的循环蠕变实验结果
图4  滞弹性机制下析出相钉扎与位错弓出示意图
图5  11.5CrNbTi 和15Cr0.5MoNbTi不锈钢在最大外加应力60 MPa下循环蠕变裂纹扩展区形貌
图6  11.5CrNbTi 和15Cr0.5MoNbTi不锈钢在最大外加应力80 MPa下循环蠕变裂纹扩展区形貌
图7  11.5CrNbTi不锈钢在最大外加应力80 MPa下的循环蠕变变形前后的微观组织结构
图8  11.5CrNbTi不锈钢在最大外加应力60 MPa和70 MPa下循环蠕变后的微观组织结构
图9  15Cr0.5MoNbTi不锈钢在最大外加应力80 MPa下的循环蠕变变形前后的微观组织结构
图10  15Cr0.5MoNbTi不锈钢在最大外加应力60 MPa和70 MPa下循环蠕变后的微观组织结构
[1] Li X, Liu H L, Bi H Y, et al.Oxidation behavior of 18CrNb ferritic stainless steel at elevated temperatures[J]. Chin. J. Mater. Res., 2016, 30(4): 263李鑫, 刘后龙, 毕洪运等. 中铬铁素体不锈钢18CrNb高温氧化行为[J]. 材料研究学报,2016,30(4): 263)
[2] Ma L, Han J, Shen J Q, et al.Effects of microalloying and heat-treatment temperature on the toughness of 26Cr-3.5Mo super ferritic stainless steels[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27(3): 407
[3] Qiang S M, Jiang L Z, Li J, et al.Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method[J]. Acta Metall. Sin., 2015, 51(11): 1349(强少明, 江来珠, 李劲等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性[J]. 金属学报, 2015,51(11): 1349)
[4] Liu T L, Chen L J, Bi H Y, et al.Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27(3): 452
[5] Li H B, Jiang Z H, Feng H, et al.Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(9): 850
[6] Dong Z G, Chen H T, Lang Y P, et al.Effect of Ti and Nb on high temperature mechanical property of ferritic stainless steel used for hot end of automotive exhaust system[J]. Iron and Steel, 2013, 48(2): 64董志刚, 陈海涛, 郎宇平等. 铌、钛对汽车排气系统热端用铁素体不锈钢高温力学性能的影响[J]. 钢铁,2013,48(2): 64)
[7] Tie Z M.Mechanical properties of Ni-Ti ferritic stainless steel after high temperature aging[J]. Foundry Technology,2015, 36(1): 74铁争鸣. 汽车排气管用Nb-Ti铁素体不锈钢在高温时效过程中的力学性能变化 [J].铸造技术, 2015, 36(1): 74)
[8] Wang S L, Shen B L, Gao S J, et al.Influence of heat treatment on high temperature cyclic creep behavior of mullite short fiber reinforced ZL107 alloy[J]. Acta Metall. Sin., 2000, 36(5): 550王珊玲, 沈保罗, 高升吉等. 热处理对莫来石短纤维增强ZL107合金高温循环蠕变行为的影响[J]. 金属学报, 2000, 36(5): 550)
[9] Zhao P, Xuan F Z.Ratchetting behavior of advanced 9-12% chromium ferrite steel under creep-fatigue loadings[J]. Mech. Mater., 2011, 43: 299
[10] Zhu S J, Yang Z A, Wang Z G.Cyclic creep deformation and fracture of a Cr-Mo rotor steel at elevated temperatures[J]. Chin. J. Mat. Sci. Technol., 1992, 8: 255
[11] Kim W G, Park J Y, Ekaputra I M W, et al. Cyclic creep behaviour under tension-tension loading cycles with hold time of modified 9Cr-1Mo steel[J]. Mater. High Temp., 2014, 31(3): 249
[12] Kang G Z, Zhang J, Sun Y F, et al.Uniaxial time-dependent ratcheting of SS304 stainless steel at high temperatures[J]. J. Iron Steel Res. Int., 2007, 14(1): 53
[13] Morris D G, Harries D R.The cyclic creep behaviour of Type 316 stainless steel[J]. J. Mater. Sci., 1978, 13: 985
[14] Paul S K, Sivaprasad S, Dhar S, et al.True stress-controlled ratcheting behavior of 304LN stainless steel[J]. J. Mater. Sci., 2012, 47: 4660
[15] Sarkar A, Nagesha A, Parameswaran P, et al.Transition in failure mechanism under cyclic creep in 316LN austenitic stainless steel[J]. Metall. Mater. Trans. A, 2014, 45: 2931
[16] Sarkar A, Nagesha A, Sandhya R, et al.Effect of mean stress and stress amplitude on the ratcheting behaviour of 316LN stainless steel under dynamic strain aging regime[J]. Mater. High Temp., 2012, 29(4): 351
[17] Kang G Z, Dong Y W, Wang H, et al.Dislocation evolution in 316L stainless steel subjected to uniaxial ratcheting deformation[J]. Mater. Sci. Eng., A, 2010, 527: 5952
[18] Gaudin C, Feaugas X.Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses[J]. Acta Mater., 2004, 52: 3097
[19] Shu J, Bi H Y, Li X, et al.The effects of molybdenum addition on high temperature oxidation behavior at 1,000℃ of type 444 ferritic stainless steel[J].Oxid. Met., 2012, 78: 253
[20] Fan Z C, Chen X D, Chen L, et al.Fatigue creep interaction behavior of 1.25Cr0.5Mo steels and analysis free from creep invalidation[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(12): 2021范志超, 陈学东, 陈凌等. 1.25Cr0.5Mo钢疲劳蠕变及免于蠕变失效分析[J]. 浙江大学学报(工学版), 2006, 40(12): 2021)
[21] Kang G Z, Dong Y W, Liu Y J, et al.Uniaxial ratchetting of 20 carbon steel: macroscopic and microscopic experimental observations[J]. Mater. Sci. Eng., A, 2011, 528: 5610
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.