Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 58-64    DOI: 10.11901/1005.3093.2017.121
  研究论文 本期目录 | 过刊浏览 |
聚苯胺包覆酸处理螺旋碳纤维材料的制备和电化学性能
史泰龙, 唐国霞, 赵晨曦, 黄新林, 刘秀昀, 孙益欣, 朱亚波()
中国矿业大学材料科学与工程学院 徐州 221116
Preparation and Electrochemical Performance of Composites of Polyaniline Coated Carbon Micro-coils
Tailong SHI, Guoxia TANG, Chenxi ZHAO, Xinlin HUANG, Xiuyun LIU, Yixin SUN, Yabo ZHU()
School of Materials Science and Engineering,China University of Mining and Technology, Xuzhou 221116, China
引用本文:

史泰龙, 唐国霞, 赵晨曦, 黄新林, 刘秀昀, 孙益欣, 朱亚波. 聚苯胺包覆酸处理螺旋碳纤维材料的制备和电化学性能[J]. 材料研究学报, 2018, 32(1): 58-64.
Tailong SHI, Guoxia TANG, Chenxi ZHAO, Xinlin HUANG, Xiuyun LIU, Yixin SUN, Yabo ZHU. Preparation and Electrochemical Performance of Composites of Polyaniline Coated Carbon Micro-coils[J]. Chinese Journal of Materials Research, 2018, 32(1): 58-64.

全文: PDF(4259 KB)   HTML
摘要: 

用原位聚合和乳液聚合两种方法制备聚苯胺(PANI)包覆螺旋碳纤维(CMCs)复合材料,使用红外光谱(FTIR),扫描电子显微镜(SEM),X射线衍射(XRD)等手段对其形貌和结构进行了表征。结果表明,用硝酸处理CMCs (表示为H-CMCs)为纤维表面提供含有羧基等含氧官能团。这为苯胺在H-CMCs表面的聚合提供基础,有助于PANI附着在H-CMCs的表面。用循环伏安、恒流充放电、交流阻抗等电化学方法测试了复合材料的电化学特性,结果表明:PANI包覆H-CMCs,其比电容值明显高于H-CMCs自身,表现出良好的大电容性能。原位聚合法更有益于PANI与H-CMCs的协同作用,使复合体的电容性能提高。

关键词 复合材料聚苯胺/碳螺旋纤维复合材料表征电容性能    
Abstract

Composites of polyaniline (PANI)-coated carbon micro-coils (CMCs) were synthesized by in-situ polymerization and emulsion polymerization methods respectively. The morphology and structure of the composites were characterized by FTIR,SEM and XRD. The results show that after CMCs have been treated with nitric acid (H-CMCs), more carboxyl group appeared on their surface, which is beneficial to the adhesion of PANI to the surface of CMCs. The electrochemical property of the composite was assessed by means of cyclic voltammetry (CV), constant-current charge-discharge and alternating-current impedance measurements. The results proved that the specific capacitance of PANI-coated H-CMCs was obviously higher than that of the H-CMCs themselves, while the in-situ polymerized H-CMCs/PANI-2 had the highest specific capacitance of 109.3 Fg-1, which was much higher than 35.76 Fg-1 of the H-CMCs at a scan rate of 5 mVs-1. The constant-current charge-discharge curves revealed that the composite capacitors contained not only the electronic double-layer capacitance of CMCs but also the faraday pseudo-capacitance of PANI. Electrochemical impedance spectroscopy (EIS) shows that the PANI coated H-CMCs present better conductivity and super capacitor characteristic.

Key wordscomposite    polyaniline/ carbon micro-coil composite    characterization    capacitance
收稿日期: 2017-02-13     
ZTFLH:  TB321  
基金资助:中国矿业大学大学生创新训练(20160008)
作者简介:

作者简介 史泰龙,男,1995年生,本科生

图1  H-CMCs,H-CMCs/PANI-2,H-CMCs/PANI-3的FTIR图
图2  CMCs/PANI-1的FTIR图
图3  CMCs、H-CMCs、CMCs/PANI-1、H-CMCs/PANI-2和H-CMCs/PANI-3的SEM图
图4  CMCs,CMCs/PANI-1和H-CMCs/PANI-3的XRD图
图5  H-CMCs、H-CMCs/PANI-2和H-CMCs/PANI-3在扫描速率为5 mVs-1条件下的循环伏安曲线以及在不同扫描速率下的比电容值
图6  H-CMCs、H-CMCs/PANI-2和H-CMCs/PANI-3在不同电流密度下的恒流充放电曲线以及在不同电流密度下的比电容值
图7  CMCs/PANI-1和H-CMCs/PANI-2在不同扫描速率下的循环伏安曲线及其在不同扫描速率下的比电容值
图8  CMCs/PANI-1在不同电流密度条件下的恒流充放电曲线
图9  H-CMCs、CMCs/PANI-1、H-CMCs/PANI-2和H-CMCs/PANI-3的交流阻抗谱
[1] Hayashida T, Pan L, Nakayama Y.Mechanical and electrical properties of carbon tubule nanocoils[J]. Phys. Rev. B: Condens. Matter, 2002, 323(1): 352
[2] Motojima S, Chen X, Yang S, et al.Properties and potential applications of carbon microcoils/nanocoils[J]. Diamond Relat. Mater., 2004, 13(11): 1989
[3] Yoshimura K, Nakano K, Miyake T, et al.Effectiveness of carbon microcoils as a reinforcing material for apolymer matrix[J]. Carbon, 2006, 44(13): 2833
[4] Wang T, Zhu Y, Fan H, et al.Raman spectra of aligned carbon micro-coilsand their impedance characteristics under loads[J]. J. Appl. Phys., 2014, 115(7): 3704
[5] Motojima S, Chen X.Preparation and Characterization of CarbonMicrocoils (CMCs)[J]. Cheminform, 2007, 80: 449
[6] Wang T, Zhu Y, Xing Z, et al.The Specific capacitive performances of the manganese oxyhydroxide/ carbon microcoil electrodes for supercapacitors[J]. Electrochim. Acta, 2015, 151: 134
[7] Adhikari P-D, Ujihara M, Imael T, et al.Reinforcement on properties of poly(vinyl alcohol) films by embedding functionalized carbon micro coils[J]. J. N. N., 2011, 11(2): 1004
[8] Girija T C, Sangaranarayanan M V.Polyaniline-based nickel electrodes for electrochemical supercapacitors—Influence of Triton X-100[J]. J. Power Sources, 2006, 159(2): 1519
[9] Somani P R, Radhakrishnan S.Electrochromic materials and devices: present and future[J]. Mater. Chem. Phys., 2003, 77(1): 117
[10] Huang J, Moore J, Acquaye J, et al.Mechanochemical route to the conducting polymer polyaniline[J]. Macromolecules, 2005, 38(2): 317
[11] Deng M G, Yang B C, Hu Y D, et al.Study of supercapacitor based on carbon nanotube-polyaniline nanocomposite[J]. Acta Chim. Sin., 2005, 63(12): 1127(邓梅根, 杨邦朝, 胡永达等. 基于碳纳米管-聚苯胺纳米复合物的超级电容器研究[J]. 化学学报, 2005, 63(12): 1127)
[12] Zhang L Y, He S J, Chen S L, et al.Preparation and electrochemical properties of polyaniline/carbon nanofiber composite materials[J]. Acta Phys-chim. Sin., 2010, 26(12): 3181(张雷勇, 何水剑, 陈水亮等. 聚苯胺/碳纳米纤维复合材料的制备及电化学性能[J]. 物理化学学报, 2010, 26(12): 3181)
[13] Gao Z Z, Tong H, Chen J H, et al.Preparation and supercapacitive performance of polyaniline covalently grafted carbon nanotubes composite material[J]. Acta Chim. Sin., 2014, 72(11): 1175(高珍珍, 佟浩, 陈建慧等. 聚苯胺共价接枝碳纳米管复合材料的制备及其超电容性能的研究[J]. 化学学报, 2014, 72(11): 1175)
[14] Wang T, Zhu Y, Fan H, et al.Raman spectra of aligned carbon micro- coils andtheir impedance characteristics under loads[J]. J. Appl. Phys., 2017, 115(7): 3704
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 张敏, 张思倩, 王栋, 陈立佳. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响[J]. 材料研究学报, 2023, 37(6): 417-422.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.