Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 73-80    DOI: 10.11901/1005.3093.2016.797
  研究论文 本期目录 | 过刊浏览 |
挤压速率对流变挤压铸造铜合金轴套零件组织和力学性能的影响
陈泽邦, 肖寒(), 李乃拥, 周荣锋, 卢德宏, 周荣
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Extrusion Rate on Microstructure and Mechanical Property of Copper Alloy Prepared by Rheological Squeeze Casting
Zebang CHEN, Han XIAO(), Naiyong LI, Rongfeng ZHOU, Dehong LU, Rong ZHOU
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

陈泽邦, 肖寒, 李乃拥, 周荣锋, 卢德宏, 周荣. 挤压速率对流变挤压铸造铜合金轴套零件组织和力学性能的影响[J]. 材料研究学报, 2018, 32(1): 73-80.
Zebang CHEN, Han XIAO, Naiyong LI, Rongfeng ZHOU, Dehong LU, Rong ZHOU. Effect of Extrusion Rate on Microstructure and Mechanical Property of Copper Alloy Prepared by Rheological Squeeze Casting[J]. Chinese Journal of Materials Research, 2018, 32(1): 73-80.

全文: PDF(11540 KB)   HTML
摘要: 

采用流变成形技术,采取冷轧-重熔的应变诱导熔化激活法(SIMA)制备流变浆料,研究挤压速率对流变挤压铸造ZCuSn10P1铜合金轴套零件组织和力学性能的影响,探讨ZCuSn10P1铜合金充型流动过程中固液两相的演变规律。结果表明:在成形比压为250 MPa,挤压速度为15 mm/s时,流变挤压铸件的组织较均匀,固液协同流动性最好。此时,抗拉强度达到最大值371.1 MPa,延伸率为8.43%,与液态挤压铸件相比,其抗拉强度、延伸率分别提高了57.3%、78.7%。在流变挤压铸造ZCuSn10P1铜合金轴套零件过程中,不仅垂直方向上存在液相偏析现象,且在水平方向上也会出现液相偏析现象。

关键词 金属材料铜合金流变挤压组织演变半固态    
Abstract

Strain induced melt activation (SIMA) based on cold rolling and remelting method is used to prepare the rheological slurry, then with which axle bush parts of Cu alloy ZCuSn10P1 were prepared by rheological squeeze casting process. Whilst the effect of extrusion rate on the microstructure and mechanical property of the prepared copper alloy, and the evolution of solid and liquid phases during the forming process were studied. The results indicate that with the forming specific pressure of 250 MPa and extrusion rate of 15 mm/s, the microstructure of the prepared Cu-alloy ZCuSn10P1 is uniform and the synergy liquidity of solid-liquid is considerable, thereby, the tensile strength of the Cu-alloy reached a peak value of 371.1 MPa and elongation of 8.43%, which are 57.3% and 78.7% respectively higher than those of the Cu-alloy prepared by liquid-phase extrusion casting process. Furthermore, it is noted that liquid-phase segregation phenomenon along not only the vertical direction, but also the horizontal direction could be observed in the microstructure of the prepared axle bush parts by the rheological squeeze casting process.

Key wordsmetallic materials    copper alloy    rheological extrusion    microstructure evolution    semi-solid
收稿日期: 2017-01-20     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金(51665024),云南省应用基础研究面上项目(2014FB131),云南省教育厅科学研究基金重点项目(2015Z031)
作者简介:

作者简介 陈泽邦,男,1991年生,硕士生

Condition Temperature
/℃
Time
/min
Pre-deformation
/%
Forming specific pressure/MPa Extrusion rate
/mms-1
1 900 25 14 250 15
2 900 25 14 250 13
3 900 25 14 250 11
表1  流变挤压成形工艺参数
图1  挤压铸件及取样位置
图2  拉伸试样尺寸示意图
图3  液态挤压件微观组织
图4  变形量14%的ZCuSn10P1铜合金在900℃重熔保温25 min水淬后的半固态组织
图5  不同挤压速率的流变挤压铸造铜合金微观组织
图6  流变挤压件的液相率、晶粒平均尺寸和形状因子
图7  挤压速率9 mm/s时轴套外观形貌及微观组织
图8  流变挤压铸件的拉伸性能
图9  液态挤压铸件拉伸断口形貌
图10  流变挤压铸件拉伸断口形貌
[1] Flemings M C.Behavior of metal alloys in the semisolid state[J]. Metall. Trans., 1991, 22A: 957
[2] Spencer D B, Mehrabila R, Flemings M C.Rheological behavior of Sn-15 pct Pb in the crystallization range[J]. Metall. Trans., 1972, 3: 1925
[3] Kirkwood D H.Semi-solid metal processing[J]. Int. Mater. Rev., 1994, 39: 173
[4] Esgandari B A, Nami B, Shahmiri M, et al.Effect of Mg and semi solid processing on microstructure and impression creep properties of A356 alloy[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2518
[5] Lashkari O, Ghomashchi R.The implication of rheology in semi-solid metal processes: an overview[J]. J. Mater. Process. Technol., 2007, 182: 229
[6] Zhao D Z, Lu G M, Cui J Z.Semi-solid thixo-extrusion of AlSi7MgBe alloy[J]. Chin. J. Mater. Res., 2009, 23: 127(赵大志, 路贵民, 崔建忠. AlSi7MgBe合金的半固态挤压成形[J]. 材料研究学报, 2009, 23: 127)
[7] Wang L P, Jiang W Y, Chen T, et al.Spheroidal microstructure formation and thixoforming of AM60B magnesium alloy prepared by SIMA process[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: s435
[8] Wang S C, Qi W J, Zheng K H, et al.Microstructure and mechanical properties of semisolid forged ZL101 aluminum alloy wheel[J]. Trans. Mater. Heat Treatment, 2013, 34(5): 116(王顺成, 戚文军, 郑开宏等. 半固态模锻ZL101铝合金车轮的组织与力学性能[J]. 材料热处理学报, 2013, 34(5): 116)
[9] Tan J B, Hou W J.Heat treatment process of AlSi9Mg alloy produced by rheo-diecasting[J]. Trans. Mater. Heat Treatment, 2010, 31(12): 43(谭建波, 侯文杰. 流变压铸AlSi9Mg合金的热处理工艺[J]. 材料热处理学报, 2010, 31(12): 43)
[10] Fang X G, Wu S S, Zhao L, et al.Microstructure of Mg-6Zn-3RE-1.4Y alloy produced by rheo-squeeze casting[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 39(方晓刚, 吴树森, 赵立等. 流变挤压铸造Mg-6Zn-3RE-1. 4Y镁合金的组织[J]. 特种铸造及有色合金, 2015, 35: 39)
[11] Ma Y Y, Yang B C, Wang Y B, et al.Rheo-die casting of AZ91D magnesium alloy by twin-screw stirring[J]. Chin. J. Rare Met., 2013, 37: 27(马跃宇, 杨必成, 王亚宝等. 双螺旋流变压铸AZ91D镁合金的研究[J]. 稀有金属, 2013, 37: 27)
[12] Hosseini V A, Aashuri H, Kokabi A H.Characterization of newly developed semisolid stir welding method for AZ91 magnesium alloy by using Mg-25%Zn interlayer[J]. Mater. Sci. Eng., 2013, 565A: 165
[13] Birol Y.Evolution of globular microstructures during processing of aluminum slurries[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1
[14] Wang J, Xiao H, Wu L B, et al.Study of rolling-remelting SIMA process for preparing the semi-solid billet of ZCuSn10 alloy[J]. Acta Metall. Sin., 2014, 50: 567(王佳, 肖寒, 吴龙彪等. 轧制-重熔SIMA法制备ZCuSn10合金半固态坯料[J]. 金属学报, 2014, 50: 567)
[15] Wu L B, Xiao H, Wang J, et al.Effect of remelting process on microstructure of semi-solid ZCuSn10 copper alloy fabricated by strain induced melt activated method[J]. Chinese J. Nonferrous Met., 2013, 23: 3302(吴龙彪, 肖寒, 王佳等. 重熔工艺对应变诱导熔化激活法制备ZCuSn10铜合金半固态组织的影响[J]. 中国有色金属学报, 2013, 23: 3302)
[16] Joly P A, Mehrabian R.The rheology of a partially solid alloy[J]. J. Mater. Sci., 1976, 11: 1393
[17] Kirkwood D H.Semisolid metal processing[J]. Int. Mater. Rev., 1994, 39: 173
[18] Suéry M, Zavaliangos A.Key problems in rheology of semi-solid alloys [A]. Proceedings of the 6th International Conference on Semi-solid Processing of Alloy and Composites[C]. Turin, Italy, 2000: 129
[19] Kumar P, Martin C L, Brown S.Shear rate thickening flow behavior of semisolid slurries[J]. Metall. Trans., 1993, 24A: 1107
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.