Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 918-924    DOI: 10.11901/1005.3093.2016.771
  研究论文 本期目录 | 过刊浏览 |
掺杂铝溶胶改性可膨胀石墨(EG)对半硬质聚氨酯泡沫(SRPUF)阻燃性能的影响
顾莹2, 刘立柱1,2(), 张笑瑞1,2, 翁凌1,2
1 哈尔滨理工大学材料科学与工程学院 哈尔滨 150040
2 哈尔滨理工大学 工程电介质及其应用教育部重点实验室 哈尔滨 150080
Effect of Alumina-sol Modified Expandable Graphite on Flame Retardation of Semi-rigid Polyurethane Form
Ying GU2, Lizhu LIU1,2(), Xiaorui ZHANG1,2, Ling WENG1,2
1 College of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
引用本文:

顾莹, 刘立柱, 张笑瑞, 翁凌. 掺杂铝溶胶改性可膨胀石墨(EG)对半硬质聚氨酯泡沫(SRPUF)阻燃性能的影响[J]. 材料研究学报, 2017, 31(12): 918-924.
Ying GU, Lizhu LIU, Xiaorui ZHANG, Ling WENG. Effect of Alumina-sol Modified Expandable Graphite on Flame Retardation of Semi-rigid Polyurethane Form[J]. Chinese Journal of Materials Research, 2017, 31(12): 918-924.

全文: PDF(2714 KB)   HTML
摘要: 

先使用铝溶胶对可膨胀石墨(EG)进行改性,然后用一步法制备纯半硬质聚氨酯泡沫(SRPUF)、掺杂未改性EG的SRPUF和掺杂改性EG的SRPUF。使用傅立叶红外光谱仪(FT-IR)和透射电子显微镜(TEM)表征了铝溶胶改性的EG,结果表明:铝溶胶包覆已经在EG表面。用材料拉伸试验机和氧指数测试仪测试泡沫的拉伸性能和阻燃性能,确定了EG的用量为12%、掺杂改性EG的SRPUF的力学性能优于掺杂未改性EG的SRPUF。使用氧指数测试仪和水平垂直燃烧测定仪测试三种SRPUF的阻燃性能,结果表明:掺杂铝溶胶改性EG的SRPUF阻燃性能最好,极限氧指数为27.6%,水平燃烧等级达到HF-1级。使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了阻燃机理,结果表明:EG表面的γ-AlOOH以脱水、晶型转变和释放不燃气体的三种形式提高了阻燃效果,同时起粘结蠕虫石墨的作用。

关键词 复合材料铝溶胶可膨胀石墨聚氨酯泡沫阻燃性能极限氧指数    
Abstract

Expandable graphite (EG) was modified by using alumina-sol (Al-sol), then the semi-rigid polyurethane foam (SRPUF), EG doped SRPUF and Al-sol modified EG doped SRPUF were prepared respectively by one step method. The prepared Al-sol modified EG was characterized by means of Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). The tensile property and flame retardance of the prepared foams were examined with tensile testing machine and oxygen index tester respectively. The results show that the surface of EG was coated with the Al-sol after modification; For the same doping amount of 12% (mass fraction), the mechanical property of the SRPUF doped with Al-sol modified EG was better than that with the plain EG; Among others, the flame retardance of the SRPUF doped with Al-sol modified EG is the best with limiting oxygen index of 27.6% and horizontal burning level of grade HF-1. The SRPUFs before and after burnt were examined by means of XRD, SEM and TEM, it follows that the enhancement of flame resistance of the SRPUF doped with Al-sol modified EG may be ascribed to the following facts, i.e. the release of crystal water, crystal-phase transformation and the release of non-flammable gas of the Al-sol on the top surface of EG, besides, the Al-sol can also play important role as binding agent for fixing the worms-like graphite.

Key wordscomposites    Al-sol    EG    polyurethane foam    flame retardance    limiting oxygen index
收稿日期: 2017-01-04     
ZTFLH:  TQ323  
基金资助:国家重点基础研究发展计划(2012CB723308)
作者简介:

作者简介 顾 莹,女,1990年生,硕士生

图1  EG表面改性的过程
图2  铝溶胶改性前后EG的TEM照片
图3  铝溶胶、未改性EG、改性EG的红外光谱
Additive amount of EG/ % Limit oxygen index of /% Tensile strength /kPa
0 14.7 239.4
8 21.8 220.1
10 22.4 173.5
12 23.9 113.4
14 24.3 87.2
表1  EG添加量对SPRUF的极限氧指数和拉伸强度的影响
图4  三种SPRUF的拉伸强度
图5  三种SPRUF的极限氧指数
No. 1 2 3 4 5
Automatic quench time/s 0.7 1.1 0.8 1.5 1.5
Droppings none none none none none
表2  添加铝溶胶改性EG的SRPUF水平燃烧测试结果
图6  铝溶胶80℃烘干和1000℃煅烧的XRD 图谱
图7  三种SRPUF燃烧后炭层形貌的SEM照片
图8  改性EG/SRPUF燃烧后EG炭层以及泡沫基体表面片层状物质的TEM照片
[1] Liu Y J.Polyurethane Resin and Its Application [M]. Beijing: Chemical Industry Press, 2012: 100(刘益军. 聚氨酯树脂及其应用 [M]. 北京: 化学工业出版社, 2012: 100)
[2] Xu P L, Zhang S Q.Handbook of Polyurethane Materials [M]. Beijing: Chemical Industry Press, 2002: 268(徐培林, 张淑琴. 聚氨酯材料手册 [M]. 北京: 化学工业出版社, 2002: 268)
[3] He J M.Novel Polymer Foaming Material and Technology [M]. Beijing: Chemical Industry Press, 2008: 10(何继敏. 新型聚合物发泡材料及技术 [M]. 北京: 化学工业出版社, 2008: 10)
[4] Mi J, Xie S M, Du J X, et al.Flame retardancy and physical properties of rigid polyurethane foam containing phosphorus flame retardants[J]. Polym. Mater. Sci. Eng., 2013, 29(10): 64(糜婧, 谢松明, 杜建新等. 含磷阻燃剂对硬质聚氨酯泡沫塑料阻燃性能和力学性能的影响[J]. 高分子材料科学与工程, 2013, 29(10): 64)
[5] Hong X D, Dai W J.Study on properties of rigid polyurethane foams plastics with phosphorus-containing flame retardants[J]. Eng. Plastics Appl., 2013, 41(8): 95(洪晓东, 代文娟. 含磷阻燃剂阻燃硬质聚氨酯泡沫塑料的性能研究 [J]. 工程塑料应用, 2013, 41(8): 95)
[6] Liu D F, Lin X S.Research progress of plastics flame-retarded by expandable graphite[J]. Plastics Sci. Technol., 2010, 38(7): 99(刘定福, 林晓珊. 可膨胀石墨阻燃塑料研究进展[J]. 塑料科技, 2010, 38(7): 99)
[7] Modesti M, Lorenzetti A, Simioni F, et al.Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams[J]. Polym. Degrad. Stab., 2002, 77: 195
[8] Dong J L, Cao H B, Zhang Y.Preparation of flame-retardant of water blown polyurethane foams filled with expandable graphite[J]. Polym. Mater. Sci. Eng., 2009, 25(6): 128(董金路, 曹宏斌, 张懿. 可膨胀石墨阻燃水发泡聚氨酯泡沫塑料的制备[J]. 高分子材料科学与工程, 2009, 25(6): 128)
[9] Kou B, Tan L H, Hang Z S.Progress in research on synergic fire retarding of expandable graphite[J]. Mater. Rev., 2010, 24(9): 84(寇波, 谈玲华, 杭祖圣. 可膨胀石墨协同阻燃的研究进展[J]. 材料导报, 2010, 24(9): 84)
[10] Liu F P, Zhu W M.Fire retardant intumescent coating for lignocellulosic materials [P]. US, 5968669, 1999
[11] Zhan G, Chen Q Q, Shi Y, et al.Manufacture and stability test of alumina sol[J]. J. Wuhan Inst. Technol., 2012, 34(9): 39(詹刚, 陈巧巧, 石月等. 铝溶胶的制备及稳定性 [J]. 武汉工程大学学报, 2012, 34(9): 39)
[12] Yin J J, Li M, Li Y B, et al.Preparation of alumina sol with high solid content[J]. Contemporary Chemical Industry, 2014, 43: 1988(尹建军, 黎敏, 李玉波等. 高固含量铝溶胶的制备[J]. 当代化工, 2014, 43: 1988)
[13] Dressler M, Nofz M, Pauli J, et al.Influence of polyvinylpyrrolidone (PVP) on alumina sols prepared by a modified yoldas procedure[J]. J. Sol-Gel Sci. Technol., 2008, 47: 260
[14] Jia Y L.Preparation, properties and structure of alumina sol [D]. Wuhan: Wuhan University of Technology, 2012(贾宇龙. 铝溶胶的制备及结构性能 [D]. 武汉: 武汉理工大学, 2012)
[15] Song X J.Influence of accelerators addition on workability and mechanical strength of colloidal alumina bonded corundum-based castables [D]. Zhengzhou: Zhengzhou University, 2014(宋秀娟. 促凝剂对铝溶胶结合刚玉质浇注料工作性能和强度的影响 [D]. 郑州: 郑州大学, 2014)
[16] Zhao H Z, Xu B, He Z Y.Preparation and characterization of structure and property of AlOOH sol[J]. J. Wuhan Univ. Sci. Technol., 2010, 33: 264(赵惠中, 徐兵, 贺中央. AlOOH溶胶的制备及其结构与性能表征[J]. 武汉科技大学学报, 2010, 33: 264)
[17] Mukhopadhyay S, Mahapatra S, Mukherjee P, et al.Effect of alumina sol in no-cement refractory castables[J]. Trans. Indian Ceramic Soc., 2001, 60: 63
[18] Wang L Z.Studies on flame horizontal model and stochastic model in the building [D]. Chongqing: Chongqing University, 2006(王利珍. 可燃物水平火焰蔓延模型和随机模型的研究 [D]. 重庆: 重庆大学, 2006)
[19] Li B, Shao L L.Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorganic Chemicals Industry, 2008, 40(2): 54(李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定[J]. 无机盐工业, 2008, 40(2): 54)
[20] Yang N R, Yue W H.Handbook of Inorganic Non Metallic Material [M]. Wuhan: Wuhan Industrial University Press, 2000: 6(杨南如, 岳文海. 无机非金属材料图谱手册 [M]. 武汉: 武汉工业大学出版社, 2000: 6)
[21] Bohlin P, Audy O, ?krdliková L, et al.Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments[J]. Environ. Sci.: Processes Impacts, 2014, 16: 2617
[22] Li Y H.Preparation and application of micro/nanostructured alumina powder [D]. Guangzhou: South China University of Technology, 2014(李艳辉. 微纳米结构氧化铝粉体合成与应用研究 [D]. 广州: 华南理工大学, 2014)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.