Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 939-946    DOI: 10.11901/1005.3093.2016.742
  研究论文 本期目录 | 过刊浏览 |
316LN钢焊缝在冲击过程中裂纹扩展行为分析
代克顺, 朱黎, 王晗, 肖文凯()
武汉大学动力与机械学院 武汉 430072
Crack Propagation of Weld Joint for Steel 316LN by Impact Loading
Keshun DAI, Li ZHU, Han WANG, Wenkai XIAO()
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
引用本文:

代克顺, 朱黎, 王晗, 肖文凯. 316LN钢焊缝在冲击过程中裂纹扩展行为分析[J]. 材料研究学报, 2017, 31(12): 939-946.
Keshun DAI, Li ZHU, Han WANG, Wenkai XIAO. Crack Propagation of Weld Joint for Steel 316LN by Impact Loading[J]. Chinese Journal of Materials Research, 2017, 31(12): 939-946.

全文: PDF(8011 KB)   HTML
摘要: 

研究了316LN钢焊缝铸态组织在冲击载荷下的断裂行为。针对316LN钢铸态组织中常见的微观组织结构,如等轴状,柱状和树枝状亚晶等组织形态,结合粘聚力有限元方法(CFEM)进行建模,模拟了其裂纹扩展行为并与冲击实验中裂纹的实际扩展路径对比。结果表明,模拟结果给出的裂纹扩展规律与冲击实验结果一致。

关键词 金属材料裂纹扩展粘聚力有限元方法亚晶    
Abstract

The fracture behavior of weld join of steel 316LN by impact test was investigated in terms of macro and micro perspectives, while a numerical model based on cohesive finite element method (CFEM) was presented to describe the effect of microstructure on the fracture behavior of the weld joint of steel 316LN. Based on microstructure images acquired from the experiments, three types of typical microstructure such as equiaxial-, columnar- and dendritic sub-grains were numerically modeled. The crack propagation paths in the three types of microstructure were simulated, and which then were compared with the experimental results. It follows that the observed fracture behavior can be interpreted quite well by the prediction of the simulation.

Key wordsmetallic materials    crack propagation    cohesive finite element method    sub-grains
收稿日期: 2016-12-20     
ZTFLH:  TG115.6  
作者简介:

作者简介 代克顺,男,1989年生,硕士生

图1  316LN焊缝铸态显微组织
图2  夏比V型冲击试验模型
图3  双线性内聚力定理
图4  不同形态亚晶粒的等轴亚晶粒模型、柱状亚晶粒模型和树枝状亚晶粒模型
图5  纳米压痕过程中的载荷位移曲线
σ0
/106 Pa
α
/106 Pa
β ε˙0 n Density, ρ
/kgm-3
E
/109 Pa
ν Tm
/106 Pa
Wc
/10-6 m
GF
/103 Jm-2
Sub-grain zone 325 1854 0.01262 0.1 0.42 7900 173.3 0.28 1480 10 14.8
Sub-grainboundary 455 2120 0.01262 0.1 0.35 7900 206.8 0.28 1800 6 10.8
表1  焊缝金属的力学性能参数
图6  裂纹在焊缝中的实际扩展路径和模拟扩展路径对比
图7  实际与模拟条件下裂纹在柱状亚晶组织中的扩展
图8  冲击断口的扫描图片
[1] Xu X P, Needleman A.Numerical simulations of fast crack growth in brittle solids[J]. J. Mech. Phys. Solids, 1994, 42: 1397
[2] Haselbach P U, Bitsche R D, Branner K.The effect of delaminations on local buckling in wind turbine blades[J]. Renew. Energ., 2016, 85: 295
[3] Zhou W, Liu R, Wang Y R, et al.Acoustic emission monitoring and finite element analysis for torsion failure of Metal/FRP cylinder-shell adhesive joints[J]. J. Adhes. Sci. Technol., 2015, 29: 2433
[4] Zhang Y, Mabrouki T, Nelias D, et al.Cutting simulation capabilities based on crystal plasticity theory and discrete cohesive elements[J]. J. Mater. Process. Technol., 2012, 212: 936
[5] Arora H, Tarleton E, Li-Mayer J, et al.Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method[J]. Comput. Mater. Sci., 2015, 110: 91
[6] Nafar Dastgerdi J, Anbarlooie B, Marzban S, et al.Mechanical and real microstructure behavior analysis of particulate-reinforced nanocomposite considering debonding damage based on cohesive finite element method[J]. Comp. Struct., 2015, 122: 518
[7] Yang L, Wu Z J, Gao D Y, et al.Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact[J]. Comput. Mater. Sci., 2016, 111: 148
[8] Hashemi R, Spring D W, Paulino G H.On small deformation interfacial debonding in composite materials: Containing multi-coated particles[J]. J. Comp. Mater., 2015, 49: 3439
[9] Espinosa H D, Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples[J]. Mech. Mater., 2003, 35: 365
[10] Espinosa H D, Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation[J]. Mech. Mater., 2003, 35: 333
[11] Li Y, Zhou M.Prediction of fracturess toughness of ceramic composites as function of microstructure: II. Analytical model[J]. J. Mech. Phys. Solids, 2013, 61: 489
[12] Li Y, Zhou M.Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations[J]. J. Mech. Phys. Solids, 2013, 61: 472
[13] Zhai J, Tomar V, Zhou M.Micromechanical simulation of dynamic fracture using the cohesive finite element method[J]. J. Eng. Mater. Technol., 2004, 126: 179
[14] Hütter G, Zybell L, Kuna M.Micromechanical modeling of crack propagation in nodular cast iron with competing ductile and cleavage failure[J]. Eng. Fract. Mech., 2015, 147: 388
[15] Barrera O, Tarleton E, Cocks A C F. A micromechanical image-based model for the featureless zone of a Fe-Ni dissimilar weld[J]. Philosoph. Mag., 2014, 94: 1361
[16] Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J.Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding[J]. Mater. Des., 2015, 68: 167
[17] Matsuno T, Teodosiu C, Maeda D, et al.Mesoscale simulation of the early evolution of ductile fracture in dual-phase steels[J]. Int. J. Plasticity, 2015, 74: 17
[18] Saeidi K, Gao X, Zhong Y, et al.Hardened austenite steel with columnar sub-grain structure formed by laser melting[J]. Mater. Sci. Eng., 2015, 625A: 221
[19] Khan A S, Huang S J.Continuum Theory of Plasticity[M]. New York: John Wiley & Sons, Inc.
[20] Gupta A K, Anirudh V K, Singh S K.Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures[J]. Mater. Des., 2013, 43: 410
[21] Ardakani S H, Afshar A, Mohammadi S.Numerical study of thermo-mechanical coupling effects on crack tip fields of mixed-mode fracture in pseudoelastic shape memory alloys[J]. Int. J. Solids Struct., 2016, 81:160
[22] Yuan H, Li X.Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models[J]. Eng. Fract. Mech., 2014, 126: 1
[23] Guo E Y, Wang M Y, Jing T, et al.Temperature-dependent mechanical properties of an austenitic-ferritic stainless steel studied by in situ tensile loading in a scanning electron microscope (SEM)[J]. Mater. Sci. Eng., 2013, 580A: 159
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.