Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 931-938    DOI: 10.11901/1005.3093.2016.739
  研究论文 本期目录 | 过刊浏览 |
B、SG及MG的添加对Mg-Al合金储氢性能的影响
黄显吞(), 卿培林, 石伟和
百色学院材料科学与工程学院 百色 533000
Influence of Boron, Single-layer Graphene and Multi-layer Graphene on Hydrogen Storage Property of Mg-Al Alloy
Xiantun HUANG(), Peilin QING, Weihe SHI
Department of Materials Science and Engineering, Baise College, Baise 533000, China
引用本文:

黄显吞, 卿培林, 石伟和. B、SG及MG的添加对Mg-Al合金储氢性能的影响[J]. 材料研究学报, 2017, 31(12): 931-938.
Xiantun HUANG, Peilin QING, Weihe SHI. Influence of Boron, Single-layer Graphene and Multi-layer Graphene on Hydrogen Storage Property of Mg-Al Alloy[J]. Chinese Journal of Materials Research, 2017, 31(12): 931-938.

全文: PDF(2843 KB)   HTML
摘要: 

在氩气保护下,采用机械合金化制备Mg-Al合金,并研究二维结构材料B、SG及MG的添加对Mg-Al合金储氢性能的影响。试验结果显示,合金材料主要由Mg17Al12相组成,在碳素材料的催化作用下,Mg-Al合金的综合储氢性能得到明显提高。Mg-Al合金的初始放氢温度为575 K,添加SG或MG后合金材料的初始放氢温度分别降低了64 K和82 K,脱氢峰值温度也分别降低了76 K和74 K,而Mg-Al合金材料放氢过程的表观活化能则从328.9 kJ/mol分别下降到231.5 kJ/mol和211.9 kJ/mol。

关键词 金属材料Mg-Al合金机械合金化碳素材料储氢性能    
Abstract

Mg-Al alloy was prepared via mechanical alloying under hydrogen atmosphere protection, and then the influence of doping substance such as: boron (B), single-layer graphene (SG) and multi-layer graphene (MG) (in 5%, mass fraction) respectively on the hydrogen storage property of Mg-Al alloy was investigated systematically. The results show that the prepared alloy is mainly composed of Mg17Al12, while the hydrogen storage performance for the Mg-Al alloy is improved obviously by doping graphene SG and MG respectively. The initial desorption temperature for Mg-Al-5 (SG and MG) alloy is 64 K and 82 K lower than that of the plain Mg-Al alloy (575 K), and correspondingly their dehydrogenation peak temperature was 76 K and 74 K lower. Besides, with the incorporation of SG and MG, the apparent activation energy of the Mg-Al alloy decreases from 328.9 kJ/mol to 231.5 kJ/mol and 289.4 kJ/mol respectively.

Key wordsmetallic materials    Mg-Al alloy    mechanical alloying    carbon materials    hydrogen storage property
收稿日期: 2016-12-20     
ZTFLH:  TG139  
基金资助:广西自然科学基金(2014GXNSFAA118346),广西高校重点学科:材料物理与化学(百色学院)[KS16ZD06]
作者简介:

作者简介 黄显吞,男,1969年生,硕士

图1  Mg-Al-x(x=0, B, SG, MG)合金样品球磨50 h后的SEM图
图2  Mg-Al-x(x=0, B, SG, MG)合金样品球磨及吸/放氢后的XRD图
图3  Mg-Al-x(x=0, B, SG, MG)合金材料变温吸/放氢曲线
图4  Mg-Al-x(x=0, B, SG, MG)合金材料在573 K温度下的吸/放氢动力学曲线
图5  Mg-Al-MG合金材料在523 K、573 K以及623 K温度下的吸氢动力学曲线
图6  Mg-Al-MG合金材料在吸氢过程的ln[-ln(1-α)]和lnt关系曲线
图7  Mg-Al-MG合金材料在吸氢过程的(1000/RT)-lnk曲线
图8  Mg-Al-x(x=0, B, SG, MG)合金材料的DTA曲线
图9  Mg-Al-x(x=0, B, SG, MG)合金材料Kissinger方程曲线
[1] Choi Y J, Lu J, Sohn H Y, et al.Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling[J] . J. Power Sources, 2008, 180: 491
[2] Luo X L, Grant D M, Walker G S.Catalytic effect of nano-sized ScH2 on the hydrogen storage of mechanically milled MgH2[J]. J. Alloy. Compd., 2015, 622: 842
[3] Wan Q, Li P, Shan J W, et al.Superior catalytic effect of nickel ferrite nanoparticles in improving hydrogen storage properties of MgH2[J]. J. Phys. Chem., 2015, 119C: 2925
[4] Mushnikov N V, Ermakov A E, Uimin M A, et al.Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen[J]. Phys. Met. Metallogr., 2006, 102: 421
[5] Imamura H, Masanari K, Kusuhara M, et al.High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling[J]. J. Alloy. Compd., 2005, 386: 211
[6] Wu C Z, Wang P, Yao X, et al.Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling[J]. J. Alloy. Compd., 2006, 420: 278
[7] Huang Z G, Guo Z P, Calka A, et al.Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium[J]. J. Alloy. Compd., 2007, 427: 94
[8] Tanniru M, Slattery D K, Ebrahimi F.A study of phase transformations during the development of pressure-composition-isotherms for electrodeposited Mg-Al alloys[J]. Int. J. Hydrogen Energ., 2011, 36: 639
[9] Zhong H C, Wang H, Ouyang L Z.Improving the hydrogen storage properties of MgH2 by reversibly forming Mg-Al solid solution alloys[J]. Int. J. Hydrogen Energ., 2014, 39: 3320
[10] Lee S L, Hsu C W, Hsu F K, et al.Effects of Ni addition on hydrogen storage properties of Mg17Al12 alloy[J]. Mater. Chem. Phy.,2011, 126: 319
[11] Crivello J C, Nobuki T, Kato S, et al. Hydrogen absorption properties of the γ-Mg17Al12 phase and its Al-richer domain [J]. J. Alloy. Compd., 2007, 446-447: 157
[12] Peng W Q, Lan Z Q, Wei W L, et al.Investigation on preparation and hydrogen storage performance of Mg17Al12 alloy[J]. Int. J. Hydrogen Energ., 2016, 41: 1759
[13] Imamura H, Tabata S, Takesue Y, et al.Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon[J]. Int. J. Hydrogen Energ., 2000, 25: 837
[14] Liu G, Wang Y J, Xu C C, et al.Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride[J]. Nanoscale, 2013, 5: 1074
[15] Novoselov K S, Fal’ko V I, Colombo L, et al.A roadmap for graphene[J]. Nature, 2012, 490: 192
[16] Allen M J, Tung V C, Kaner R B.Honeycomb carbon: A review of graphene[J]. Chem. Rev., 2010, 110: 132
[17] Tao S X, Kalisvaart W P, Danaie M, et al.First principle study of hydrogen diffusion in equilibrium rutile, rutile with deformation twins and fluorite polymorph of Mg hydride[J]. Int. J. Hydrogen Energ., 2011, 36: 11802
[18] Liang G, Huot J, Boily S, et al.Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite[J]. J. Alloy. Compd., 1999, 291: 295
[19] Tan X H, Harrower C T, Amirkhiz B S, et al.Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films[J]. Int. J. Hydrogen Energ., 2009, 34: 7741
[20] Yao X D, Wu C Z, Du A J, et al.Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage[J]. J. Phys. Chem., 2006, 110B: 11697
[21] Yao X D, Lu G Q.Magnesium-based materials for hydrogen storage: Recent advances and future perspectives[J]. Chinese Sci. Bull., 2008, 53: 2421
[22] Muthukumar P, Satheesh A, Linder M, et al.Studies on hydriding kinetics of some La-based metal hydride alloys[J]. Int. J. Hydrogen Energ., 2009, 34: 7253
[23] Fernández J F, Sánchez C R.Rate determining step in the absorption and desorption of hydrogen by magnesium[J]. J. Alloy. Compd., 2002, 340: 189
[24] Norberg N S, Arthur T S, Fredrick S J, et al.Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. J. Am. Chem. Soc., 2011, 133: 10679
[25] Wang Y Q, Lu S X, Zhou Z Y, et al.Effect of transition metal on the hydrogen storage properties of Mg-Al alloy[J]. Mater Sci., 2017, 52: 2392
[26] Kissinger H E.Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.