Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 809-817    DOI: 10.11901/1005.3093.2016.718
  研究论文 本期目录 | 过刊浏览 |
退火对大变形异步-同步复合轧制超细晶TWIP钢组织与性能的影响
姚学峰1, 付斌1,2, 付立铭1(), 张道达3, 尧登灿3, 单爱党1
1 上海交通大学材料科学与工程学院上海 200240。
2 上海应用技术大学材料科学与工程学院上海 201418。
3 江西省机械科学研究所南昌 330002。
Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-grained TWIP Steel Produced by Severely Asymmetric and Symmetric Rolling
Xuefeng YAO1, Bin FU1,2, Liming FU1(), Daoda ZHANG3, Dengcan YAO3, Aidang SHAN1
1 Department of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
2 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
3 Jiangxi Mechanical Science Institute, Nanchang 330002, China.
引用本文:

姚学峰, 付斌, 付立铭, 张道达, 尧登灿, 单爱党. 退火对大变形异步-同步复合轧制超细晶TWIP钢组织与性能的影响[J]. 材料研究学报, 2017, 31(11): 809-817.
Xuefeng YAO, Bin FU, Liming FU, Daoda ZHANG, Dengcan YAO, Aidang SHAN. Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-grained TWIP Steel Produced by Severely Asymmetric and Symmetric Rolling[J]. Chinese Journal of Materials Research, 2017, 31(11): 809-817.

全文: PDF(8975 KB)   HTML
摘要: 

研究了不同退火温度对大变形异步与同步复合冷轧制TWIP钢(Fe-0.5C-18.6Mn-1.5Al-0.5Si)的组织和性能的影响,结果表明:经96%大变形轧制后的材料组织明显细化,抗拉强度从593 MPa提升至2021 MPa;在500℃以下退火,大变形轧制超细晶TWIP钢未发生再结晶;在500~600℃发生部分再结晶;在600℃以上则发生完全再结晶。随着退火温度升高,材料强度降低,但塑性增加,大变形异步-同步轧制后经700℃退火获得了平均晶粒尺寸600 nm的超细晶TWIP钢,并表现出优秀的综合力学性能,其强度、塑性分别达到1114 MPa、59.4%。此外,制备的TWIP钢在500℃~600℃退火时,奥氏体基体中生成了大量细小弥散的硬质DO3结构的(Fe, Mn)3(Al, Si)型金属间化合物,显著提高了材料强度。

关键词 金属材料超细晶TWIP钢大变形异步轧制退火力学性能    
Abstract

The effect of annealing temperature on microstructure and mechanical properties of TWIP steel (Fe-0.5C-18.6Mn-1.5Al-0.5Si) is investigated, while the steel was produced aforehand by severe symmetric and asymmetric rolling at room temperature. The results show that the grain size is significantly refined after severe asymmetric and symmetric rolling, and the ultimate tensile strength (UTS) increased from 593 MPa to 2021 MPa. The severely rolled TWIP steel shows no recrystallization when annealed below 500℃, partial recrystallization when annealed between 500-600℃, and full recrystallization when annealed above 700℃. With the increasing annealing temperature, the strength decreases while the elongation increases. Specifically, the UFG (Ultrafine-grained) TWIP steel with an average grain size of 500nm and excellent mechanical properties can be obtained when annealed at 700℃, i.e. the UTS, elongation and product of strength and elongation of the steel are 1114 MPa,59.4 % and 66.2 GPa·%, respectively. Moreover, when annealed between 500-600℃, there existed many dispersive fine-grained intermetallic compounds with DO3-type crystallographic structure in the produced steel, which can significantly enhance the strength of the steel

Key wordsmetallic materials    ultrafine-grained TWIP steel    severely asymmetric rolling    annealing    mechanical property
收稿日期: 2016-12-07     
基金资助:资助项目中国博士后科学基金(2015M581608),江西省科技厅项目(20151BDH80082),国家重点研发专项(2014ZX07214-002)
作者简介:

姚学峰,男,1991年生,硕士生

图1  TWIP钢组织的OM像
图2  大变形异步-同步轧制TWIP钢经不同温度退火后组织的OM像
图3  TWIP 钢的TEM像
图4  600℃退火后TWIP钢的EBSD结果
图5  5500 ℃退火后TWIP钢中DO3相的SEM与TEM分析
图6  TWIP钢的XRD谱
图7  不同处理状态下TWIP钢的显微硬度
图8  不同处理状态下TWIP钢的拉伸性能
图9  不同处理状态下TWIP钢的应变硬化速率
图10  TWIP钢拉伸断口的SEM像
[1] Lan P, Du C W, Ji Y, et al.Research status of high manganese TWIP steel for automotive industry[J]. China Metallurgy, 2010, 24(7): 6(兰鹏, 杜辰伟, 纪元等. 汽车用高锰TWIP钢的研究现状[J]. 中国冶金, 2014, 24(7): 6)
[2] Liu X H, Liu W, Liu J B, et al.Current situation of the TWIP steel[J]. Materials Review, 2010, 24(11): 102(刘向海, 刘薇, 刘嘉斌等. 孪生诱发塑性(TWIP)钢的研究现状[J]. 材料导报, 2010, 24(11): 102)
[3] Grässel O, Frommeyer G, Derder C, et al.Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J]. Le Journal de Physique IV, 1997, 7(C5): 383
[4] Bouaziz O, Allain S, Scott C.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scripta Materialia, 2008, 58(6): 484
[5] Allain, S, Chateau, J P, Bouaziz, O.A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel[J]. Materials Science and Engineering: A, 2004, 387: 143
[6] Allain, S, Chateau, J P, Dahmoun, D, et al.Modeling of mechanical twinning in a high manganese content austenitic steel[J]. Materials Science and Engineering: A, 2004, 387: 272
[7] Dastur Y, Leslie W.Mechanism of work hardening in Hadfield manganese steel[J]. Metallurgical transactions A, 1981, 12(5): 749
[8] Sevillano J G.An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel[J]. Scripta Materialia, 2009, 60(5): 336
[9] Shterner V, Timokhina I B, Beladi H.On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures[J]. Materials Science and Engineering: A, 2016, 669: 437
[10] Bouaziz O, Allain S, Scott C, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current opinion in solid state and materials science, 2011, 15(4): 141
[11] Dini G, Najafizadeh A, Ueji R, et al.Tensile deformation behavior of high manganese austenitic steel: The role of grain size[J]. Materials & Design, 2010, 31(7): 3395
[12] Koyama M, Sawaguchi T, Lee T, et al.Work hardening associated with ɛ-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(24): 7310
[13] Saha R, Ueji R, Tsuji N.Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel[J]. Scripta Materialia, 2013, 68(10): 813
[14] Matoso M S, Figueiredo R B, Kawasaki M, et al.Processing a twinning-induced plasticity steel by high-pressure torsion[J]. Scripta Materialia, 2012, 67(7): 649
[15] Hamada A, Karjalainen L.High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels[J]. Materials Science and Engineering: A, 2010, 527(21): 5715
[16] Bagherpour E, Reihanian M, Ebrahimi R.On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel[J]. Materials & Design, 2012, 36: 391
[17] Timokhina I, Medvedev A, Lapovok R.Severe plastic deformation of a TWIP steel[J]. Materials Science and Engineering: A, 2014, 593: 163
[18] Zhao Y H, Zhu Y T, Liao X Z, et al.Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Applied physics letters, 2006, 89(12): 121906
[19] Ding Y, Jiang J, Shan A.Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling[J]. Materials Science and Engineering: A, 2009, 509(1): 76
[20] Ueji R, Tsuchida N, Terada D, et al.Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J]. Scripta Materialia, 2008, 59(9): 963
[21] Ji Y, Park J.Development of severe plastic deformation by various asymmetric rolling processes[J]. Materials Science and Engineering: A, 2009, 499(1): 14
[22] Jiang J, Ding Y, Zuo F, et al.Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling[J]. Scripta Materialia, 2009, 60(10): 905
[23] Li Z, Fu L, Fu B, et al.Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Materials Science and Engineering: A, 2012, 558: 309
[24] Kim S-H, Kim H, Kim N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518(7537): 77
[25] Yang M, Yuan F, Xie Q, et al.Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel[J]. Acta Materialia, 2016, 109: 213
[26] Birks L, Friedman H.Particle size determination from X-ray line broadening[J]. Journal of Applied Physics, 1946, 17(8): 687
[27] Gutierrez-Urrutia I, Zaefferer S, Raabe D.The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.% Mn-0.6wt.%C TWIP steel[J]. Materials Science and Engineering: A, 2010, 527(15): 3552
[28] Zhao Y, Zhu Y, Liao X, et al.Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Applied physics letters, 2006, 89(12): 121906
[29] Xiong R G, Fu R Y, Su Y, et al.Fracture mechanism of TWIP steel under dynamic tensile condition[J]. Shanghai Metals, 2008, 30(5): 12(熊荣刚, 符仁钰, 苏钰等. 动态拉伸条件下TWIP钢的断裂机制[J]. 上海金属, 2008, 30(5): 12)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.