Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (12): 894-900    DOI: 10.11901/1005.3093.2016.686
  研究论文 本期目录 | 过刊浏览 |
B4C/TiB2复相陶瓷硬度压痕的尺寸效应
郭伟明(), 谭大旺, 吴利翔, 林华泰, 伍尚华
广东工业大学机电工程学院 广州 510006
Indentation Size Effect for the Hardness of B4C/TiB2 Ceramics
Weiming GUO(), Dawang TAN, Lixiang WU, Huatai LIN, Shanghua WU
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
引用本文:

郭伟明, 谭大旺, 吴利翔, 林华泰, 伍尚华. B4C/TiB2复相陶瓷硬度压痕的尺寸效应[J]. 材料研究学报, 2017, 31(12): 894-900.
Weiming GUO, Dawang TAN, Lixiang WU, Huatai LIN, Shanghua WU. Indentation Size Effect for the Hardness of B4C/TiB2 Ceramics[J]. Chinese Journal of Materials Research, 2017, 31(12): 894-900.

全文: PDF(2820 KB)   HTML
摘要: 

研究了热压烧结的80%(体积分数,下同)B4C/TiB2和20%B4C/TiB2复相陶瓷的压痕形貌和硬度压痕的尺寸效应。与20%B4C/TiB2相比,80%B4C/TiB2具有更高的致密度和硬度,但是其断裂韧性较低。两个样品的硬度均显示出显著的硬度压痕尺寸效应(ISE),即随着载荷的增加硬度逐渐下降。但是对于80%B4C/TiB2样品,在载荷增加过程中出现的裂纹导致其硬度值在局部载荷范围内稍微增大。理论模拟结果表明,两个样品的ISE现象与所选定的理论模型都较为符合,其中用MPSR模型对硬度测量值的拟合最为准确,样品20%B4C/TiB2的ISE程度稍大于80%B4C/TiB2。根据理论模型,80%B4C/TiB2真实硬度比20%B4C/TiB2的高4.4~6.5 GPa。

关键词 复合材料,B4C/TiB2,模拟,硬度压痕尺寸效应,显微结构,力学性能    
Abstract

Indentation size effect on the hardness measurement of hot-pressed 80%B4C/TiB2 and 20%B4C/TiB2 (in volume fraction) was investigated, while the indentation morphology was also characterized. In comparison with 20%B4C/TiB2, 80%B4C/TiB2 possesses higher relative density and hardness, but lower toughness. The two ceramics exhibit clearly the indentation size effect (ISE), whereby the measured hardness decreases with the increasing load. However, a slight increase of the measured hardness for 80%B4C/TiB2 with the increasing load, which may be ascribed to the crack occurrence for indentations during loading. The observed ISE-phenomena for the two ceramics can be described via several existing theory models, however among them the modified proportional specimen resistance model is the most suitable one. Accordingly, the ISE-degree for 80%B4C/TiB2 ceramic is slightly stronger than that for 20%B4C/TiB2 ceramic, while the true hardness of 80%B4C/TiB2 ceramic should be 4.4~6.5 GPa higher than that of 20%B4C/TiB2 ceramic.

Key wordscomposites, B4C/TiB2, modeling, indentation size effect, microstructure, mechanical properties
收稿日期: 2016-11-25     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51674236和51034012)
作者简介:

作者简介 郭伟明,男,1982年生,博士

Sample B4C% TiB2/% Relative density /% Flexure strength/MPa Vickers hardness (98 N)/GPa Fracture toughness (98 N)/(MPam1/2)
80B20T 80 20 98.1 612 25.0±0.58 4.66±0.55
20B80T 20 80 95.5 585 18.3±0.41 5.89±0.40
表1  样品的成分和性能
图1  样品的SEM显微形貌
图2  维氏硬度与载荷的关系
图3  载荷为0.098 N时的压痕位置和形貌
图4  在不同载荷条件下80%B4C/TiB2的压痕形貌
Sample HPSR /GPa HMPSR/GPa Hm /GPa
80B20T 24.0 22.6 25.2
20B80T 17.5 16.1 20.8
D-value 6.5 6.5 4.4
表2  根据不同ISE理论模型得到的样品真实硬度
图5  使用不同模型样品的ISE模拟曲线
[1] T. J. Holmquist, G. R. Johnson, Response of boron carbide subjected to high-velocity impact,International Journal of Impact Engineering, 2008, 35(8): 742
[2] S. Chen, D. Z. Wang, J. Y. Huang, Z. F. Ren, Synthesis and characterization of boron carbide nanoparticles,Applied Physics A, 2004, 79(7): 1757
[3] A. Sinha, T. Mahata, B. P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor,Journal of Nuclear Materials, 2002, 301(2-3): 165
[4] L. G. Jacobsohn, M. Nastasi, L. L. Daemen, Z. Jenei, P. Asoka-Kumar, Positron annihilation spectroscopy of sputtered boron carbide films,Diamond and Related Materials, 2005, 14(2): 201
[5] J. Y. Zhang, Z. Y. Fu, W. M. Wang, Fabrication of Titanium Diboride-Cu Composite by Self-High Temperature Synthesis plus Quick Press,Journal of Materials Science & Technology, 2005, 21(6): 841
[6] A. K. Suri, C. Subramanian, J. K. Sonber, T. S. R.Ch. Murthy, Synthesis and consolidation of boron carbide: a review,International Materials Reviews, 2010, 55(1): 4
[7] W. M. Wang, Z. Y. Fu, H. Wang, R. Z. Yuan, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics,Journal of the European Ceramic Society, 2002, 22(7): 1045
[8] H. R. Baharvandi, A. M.Hadian, Pressureless Sintering of TiB2-B4C Ceramic Matrix Composite,Journal of Materials Engineering and Performance, 2007, 17(6): 838
[9] S. Yamadaa, K. Hiraob, Y. Yamauchib, S. Kanzaki, High strength B4C-TiB2 composites fabricated by reaction hot-pressing,Journal of the European Ceramic Society, 2003, 23(7): 1123
[10] K. Sangwal, B. Surowska, P.B?aziak, Relationship between indentation size effect and material properties in the microhardness measurement of some cobalt-based alloys,Materials Chemistry and Physics, 2003, 80(2): 428
[11] H. Li, R. C.Bradt, The microhardness indentation load size effect in rutile and cassiterite single crystals,Journal of Materials Science, 1993, 28(4): 917
[12] J. H. Gong, J. J.Wu,Z. D.Guan, Examination of the Indentation Size Effect in Low-load Vickers Hardness Testing of Ceramics,Journal of the European Ceramic Society, 1999, 19(15): 2625
[13] A. Carpinteri, S.Puzzi, A fractal approach to indentation size effect,Engineering Fracture Mechanics, 2006, 73(15): 2110
[14] A. Nino, A. Tanaka, S. Sugiyama, H. Taimatsu, Indentation Size Effect for the Hardness of Refractory Carbides,Materials Transactions, 2010, 51(9): 1621
[15] A. Mukhopadhyay, G. B. Raju, B. Basu, A.K. Suri, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics,Journal of the European Ceramic Society, 2009, 29(3): 505
[16] K.Sangwal, Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids—some basic concepts and trends, Crystal Research and Technology, 2009, 44(10): 1019
[1] 李博森 廖忠新 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 0, (): 0-0.
[2] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[3] 曾仁芬, 江向平, 陈超, 黄枭坤, 聂鑫, 叶芬. Er3+ 掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12 共生无铅压电陶瓷性能的影响[J]. 材料研究学报, 2022, 36(10): 760-768.
[4] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[5] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[6] 汪鹏, 卢希龙, 曹春娥, 陈云霞, 沈华荣, 张旭. 成核-生长型液-液分相对无铅低温熔剂性能的影响[J]. 材料研究学报, 2021, 35(9): 657-666.
[7] 唐长斌, 牛浩, 黄平, 王飞, 张玉洁, 薛娟琴. NF/PDMA/MnO2-Co电容电极对低浓度Pb2+的电吸附特性[J]. 材料研究学报, 2021, 35(2): 115-127.
[8] 唐长斌, 王飞, 牛浩, 于丽花, 薛娟琴, 尹向阳. 引入电弧喷涂氮化锆中间层的钛基PbO2的电催化阳极性能[J]. 材料研究学报, 2020, 34(7): 527-534.
[9] 李红霞,李保卫,徐鹏飞,刘中兴. 热处理时间对透辉石系尾矿微晶玻璃析晶及其性能的影响[J]. 材料研究学报, 2020, 34(3): 209-216.
[10] 王光伟,陈鸿珍,李友凤,谢波,江忠远. 高温水蒸汽对CO2电化学传感器性能的影响[J]. 材料研究学报, 2019, 33(9): 713-720.
[11] 韦庆敏,李秀英,许石桦,刘国聪,黄国保,罗志辉. YVO4: Eu3+, Bi3+红色荧光粉的水热合成及其荧光性能[J]. 材料研究学报, 2019, 33(5): 394-400.
[12] 王烈林,曾阳,谢华,邓司浩,李兴萍,易发成,蒋树庆,周银行. 纳米立方LiF的液相制备及表征[J]. 材料研究学报, 2019, 33(4): 271-276.
[13] 杨万利, 代丽娜, 史忠旗, 肖志超, 张旭辉. 浸渍热解对常压烧结SiC/h-BN陶瓷力学性能的影响[J]. 材料研究学报, 2017, 31(8): 635-640.
[14] 方必军, 刘星, 张震乾, 陈智慧, 丁建宁, 赵祥永, 罗豪甦. BCZT无铅压电陶瓷的铁电相变[J]. 材料研究学报, 2017, 31(4): 248-254.
[15] 杨清华, 李宏伟, 王焕平, 马红萍, 雷若姗, 徐时清. Y2O3和纳米AlN协同作用对氮化铝陶瓷烧结性能及热传导的影响*[J]. 材料研究学报, 2013, 27(4): 342-348.