Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (8): 619-626    DOI: 10.11901/1005.3093.2016.655
  研究论文 本期目录 | 过刊浏览 |
不同纵横比ZnO纳米锥的可控合成及其光催化性能
陈燕(), 张萍, 尚永辉, 王晓玲
咸阳师范学院化学与化工学院 咸阳 712000
Controllable Synthesis and Photocatalytic Activity of ZnO Nano-cones with Different Aspect Ratio
Yan CHEN(), Ping ZHANG, Yonghui SHANG, Xiaoling WANG
Chemistry and Chemical Engineering School, Xianyang Normal University, Xianyang 712000, China
引用本文:

陈燕, 张萍, 尚永辉, 王晓玲. 不同纵横比ZnO纳米锥的可控合成及其光催化性能[J]. 材料研究学报, 2017, 31(8): 619-626.
Yan CHEN, Ping ZHANG, Yonghui SHANG, Xiaoling WANG. Controllable Synthesis and Photocatalytic Activity of ZnO Nano-cones with Different Aspect Ratio[J]. Chinese Journal of Materials Research, 2017, 31(8): 619-626.

全文: PDF(2981 KB)   HTML
摘要: 

在醋酸锌-正丁胺-四氢呋喃/乙醇溶剂热体系中改变正丁胺用量和反应温度,实现了不同纵横比ZnO纳米锥的可控合成,使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)及紫外-可见漫反射光谱(UV-Vis DRS)等手段对其形貌和结构进行表征,提出了ZnO纳米锥的生长机理。以甲基橙(MO)为目标降解物,研究了ZnO纳米锥的光催化活性。结果表明:与商业ZnO粉末相比,纳米锥表现出较高的反应活性。纵横比小的ZnO纳米锥具有的高催化活性,因为其结构中活性{001}晶面所占的比例较大。

关键词 纳米材料ZnO纳米锥可控合成形成机理光催化活性晶面    
Abstract

ZnO nano-cones with various aspect ratios were synthesized via a solvothermal reaction of zinc acetate with n-butylamine and tetrahydrofuran or ethanol by varying dosage of n-butylamine and temperature. The possible growth mechanism was proposed. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Photocatalytic activity of ZnO nano-cones in degradation of methyl orange (MO) was investigated, and the results show that ZnO nano-cones show superior photoreactivity, compared to ZnO powders as a benchmarking. The superior intrinsic photocatalytic activity can be attributed to the high percentage of exposed {001} facets of ZnO nano-cones with small aspect ratio.

Key wordsnano-materials    ZnO nano-cones    controlled synthesis    formation mechanism    photocatalytic activity    reactive facets
收稿日期: 2016-11-08     
ZTFLH:  O649  
基金资助:国家自然科学基金(21305117和21475113),陕西省自然科学基金(2012JQ2014和2017JQ2043),咸阳师范学院化学与化工学院科技成果转化项目(XSYHGKZ1701)
作者简介:

作者简介 陈 燕,女,1979年生,博士

Sample 1 Sample 2 Sample 3
Volume ratio of solution VBA:VTHF = 4.5:6 VBA:VTHF = 0.5:10 VBA:VEtOH = 0.5:10
Temperation /℃ 180 140 140
Length of the diagonal/nm 540-720 220-290 500-520
Length/nm 570-630 350-580 3210-1850
Aspect ratio 1.05-0.86 1.59-2.00 6.40-3.52
TC002 0.53 0.48 0.43
K/h-1 0.532±0.039 0.425±0.028 0.316±0.031
BET/m2g-1 1.67 2.15 1.74
k'/h-1m-2 31.7 19.5 18.4
表1  制备不同纵横比ZnO纳米锥的反应条件、TC002、BET、K和k'值
图1  (a)样品1、(b)样品2和(c)样品3的SEM图
图2  样品1(I)、2(II)和3(III)的XRD谱,图中的条形图案是ZnO的XRD粉末衍射标准图谱 (JPCDS No.36-1451)
图3  样品2的(a)TEM、(b)SAED和(c)HRTEM照片
图4  VBA:VTHF =0.5:10,140℃反应不同时间制备样品的SEM照片(a) 1 h、(b) 5 h和(c) 7 h
图5  VBA:VTHF =0.5:10、在140℃反应不同时间的样品的XRD谱(a) 1 h,(b) 5 h,(c) 7 h图中条形图案是ZnO的XRD粉末衍射标准图谱 (JPCDS No.36-1451)
图6  ZnO纳米锥的形成过程示意图
图7  样品1、2、3和4的(a)UV-vis漫反射光谱和(b)带隙谱
图8  (a)样品1、2、3和4对MO染料的吸附动力学曲线;(b)含不同催化剂的MO溶液在汞灯照射下的光降解效果;(c)含有不同催化剂的MO溶液经Hg灯照射不同时间的ln(C0/C)对时间t的关系;(d)以及样品1、2、3和4光催化降解MO反应的归一化反应速率常数的比较
图9  样品1、2和3在汞灯照射下循环降解MO溶液
[1] Tong H, Ouyang S X, Bi Y P, et al.Nano-photocatalytic materials: possibilities and challenges[J]. Adv Mater, 2012, 24: 229
[2] Jiang Z Y, Kuang Q, Xie Z X, et al.Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces[J]. Adv Funct Mater, 2010, 20: 3634
[3] Zhou K B, Li Y D.Catalysis based on nanocrystals with well-defined facets[J]. Angew Chem Int Ed, 2012, 51: 602
[4] Wang Z L.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. J Phys Condens Matter, 2004, 16: R829
[5] Pan Z W, Dai Z R, Wang Z L.Nanobelts of semiconducting oxides[J]. Science, 2001, 291(9): 1947
[6] Fan Z Y, Lu J G.Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes[J]. Appl Phys Lett, 2005, 86: 032111
[7] Kind H, Yan H Q, Messer B, et al.Nanowire ultraviolet photodetectors and optical switches[J]. Adv Mater, 2002, 14(2): 158
[8] Wang C H, Chu X F, Wu M M.Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods[J]. Sens Actu B, 2006, 113: 320
[9] Law M, Greener L E, Johnson J C, et al.Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4: 455
[10] Wang Z L, Song J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(14): 242
[11] Ma C Y, Zhou Z H, Wei H, et al.Rapid large-scale preparation of ZnO nanowires for photocatalytic application[J]. Nanoscale Res Let, 2011, 6: 536
[12] Zheng Y H, Chen C Q, Zhan Y Y, et al.Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property[J]. Inorg. Chem, 2007, 46(16): 6675
[13] Zhang L N, Yang H Q, Ma J H, et al.Controllable synthesis and shape-dependent photocatalytic activity of ZnO nanorods with a cone and different aspect ratios and of short-and-fat ZnO microrods by varying the reaction temperature and time[J]. Appl Phys A, 2010, 100: 1061
[14] Guo M Y, Ching Ng A M, Liu F Z, et al. Effect of native defects on photocatalytic properties of ZnO[J]. J Phys Chem C, 2011, 115: 11095
[15] Bae J, Han J B, Zhang X M, et al.ZnO nanotubes grown at low temperature using Ga as catalysts and their enhanced photocatalytic activities[J]. J Phys Chem C, 2009, 113: 10379
[16] Ye C H, Bando Y, Shen G Z, et al.Thickness-dependent photocatalytic performance of ZnO nanoplatelets[J]. J Phys Chem B, 2006, 110: 15146
[17] Dong J Y, Lin C H, Hsu Y J, et al.Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies[J]. Cryst Eng Comm, 2012, 14: 4732
[18] Wang M, Fei G T, Zhang L D.Porous-ZnO-nanobelt film as recyclable photocatalysts with enhanced photocatalytic activity[J]. Nanoscale Res Lett, 2010, 5: 1800
[19] Wang Y X, Li X Y, Lu G, et al.Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities[J]. J Phys Chem C, 2008, 112: 7332
[20] Chantarat N, Chen Y W, Lin C C, et al.Selective oxygen-plasma-etching technique for the formation of ZnO-FTO heterostructure nanotubes and their rectified photocatalytic properties[J]. Inorg Chem, 2010, 49: 11077
[21] Sun T J, Qiu J S, Liang C H.Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays[J]. J Phys Chem C, 2008, 112: 715
[22] Wang X J, Zhang Q L, Wan Q, et al.Controllable ZnO architectures by ethanolamine- assisted hydrothermal reaction for enhanced photocatalytic activity[J]. J Phys Chem C, 2011, 115: 2769
[23] Lu F, Cai W P, Zhang Y G.ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance[J]. Adv Funct Mater, 2008, 18: 1047
[24] Lei A H, Qu B H, Zhou W C, et al.Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres[J]. Mater Lett, 2012, 66: 72
[25] Li B X, Wang Y F.Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures[J]. J Phys Chem C, 2010, 114: 890
[26] Ying Y L, Song T, Huang H W, et al.Nanoporous ZnO nanostructures for photocatalytic degradation of organic pollutants[J]. Appl Phys A, 2013, 110: 351
[27] Zhang G K, Shen X, Yang Y Q.Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity[J]. J Phys Chem C, 2011, 15: 7145
[28] Kim T Y, Kim J Y, Lee S H, et al.Characterization of ZnO needle-shaped nanostructures grown on NiO catalyst-coated Si substrates[J]. Synthetic Met, 2004, 144: 61
[29] Wang R C, Liu C P, Huang J L, et al.ZnO nanopencils: efficient field emitters[J]. Appl Phys Lett, 2005, 87: 013110
[30] Xu F, Du G H, Halasa M, et al.Formation mechanism, structural characterization, optical properties and photocatalytic activity of hierarchically arranged sisal-like ZnO architectures[J]. Chem Phys Lett, 2006, 426: 129
[31] Ma J H, Yang H Q, Song Y Z, et al.Controlled growth and photoluminescence of highly oriented arrays of ZnO nanocones with different diameters[J]. Sci China Ser E-Tech Sci, 2009, 52(5): 1264(马军虎, 杨合情, 宋玉哲等. 不同直径ZnO纳米锥阵列的可控合成及其发光特性[J]. 中国科学, 2009, 39(3): 445)
[32] Laudise R A, Ballman A A.Hydrothermal synthesis of zinc oxide and zinc sulfide[J]. J Phys Chem, 1960, 64: 688
[33] Chen Y, Zhao H, Liu B, et al.Charge separation between wurtzite ZnO polar {001} surfaces and their enhanced photocatalytic activity[J]. Applied Catalysis B, 2015, 163: 189
[34] Yang J H, Wang D G, Han H X, et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46: 1900
[35] Chen Y, Zhang P, Wang X L.Synthesis and photocatalytic activity of porous ZnS /ZnO microspheres assembled from nanosheets[J]. Mater Rev: Res, 2016, 30(8): 50(陈燕, 张萍, 王晓玲. ZnS/ZnO纳米片组装的多孔微球的制备及光催化性能研究[J].材料导报:研究篇,2016, 30(8): 50)
[36] Chen Y, Zhang L N, Zhao H, et al.Superior photocatalytic activity of porous wurtzite ZnO nanosheets with exposed {001} facets and a charge separation model between polar (001) and (001) surfaces[J]. Chem Eng J, 2015, 264: 557
[1] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[3] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[4] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[5] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[6] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.
[7] 李园园, 曾寒露, 蒲红争, 蒋明珠, 王仲明, 杨怡萌, 公祥南. 基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究[J]. 材料研究学报, 2022, 36(3): 206-212.
[8] 肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
[9] 荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰. 铁离子掺杂TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(11): 862-870.
[10] 侯静, 杨培志, 郑勤红, 杨雯, 周启航, 李学铭. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] 穆兆宇, 蔡文杰, 陈悦, 潘洁, 陈杨. 介孔氧化硅/氧化铈核壳双相复合颗粒的制备及其光催化降解活性[J]. 材料研究学报, 2021, 35(5): 364-370.
[12] 彭子童, 郜艳荣, 姚楚, 姚军龙, 朱雯雯, 徐稳, 江学良. /镱掺杂二氧化钛空心球的制备及其光催化性能[J]. 材料研究学报, 2021, 35(2): 135-142.
[13] 宋月红, 代卫丽, 徐辉, 赵敬哲. g-C3N4/Bi12O17Cl2复合物的制备及其光催化性能[J]. 材料研究学报, 2021, 35(12): 911-917.
[14] 薛文兴, 谢丽燕, 王万军, 刘明华, 黄建辉. 多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能[J]. 材料研究学报, 2020, 34(4): 311-320.
[15] 王世琦,霍文燚,徐正超,张旭海,周雪峰,方峰. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能[J]. 材料研究学报, 2020, 34(3): 176-182.