Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 867-873    DOI: 10.11901/1005.3093.2016.645
  研究论文 本期目录 | 过刊浏览 |
海泡石对补强三元乙丙橡胶热氧稳定性的影响
赵志刚1, 汤庆国1,2(), 曾召刚3, 杨爽1, 孙剑锋1,2, 梁金生1,2
1 河北工业大学生态环境与信息特种功能材料教育部重点实验室天津 300130。
2 河北工业大学能源与环境材料研究所天津 300130。
3 湘潭海泡石科技有限公司湘潭 411100。
Effect of Sepiolite on Thermo-oxidative Stability Performance of Reinforced EPDM
Zhigang ZHAO1, Qingguo TANG1,2(), Zhaogang ZENG3, Shuang YANG1, Jianfeng SUN1,2, Jinsheng LIANG1,2
1 Key Laboratory of Special Functional Materials for Ecological Environment and Information Ministry of Education, Hebei University of Technology, Tianjin 300130, China.
2 Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China.
3 Xiangtan Sepiolite Technology Company Limited, Xiangtan 411100, China.
引用本文:

赵志刚, 汤庆国, 曾召刚, 杨爽, 孙剑锋, 梁金生. 海泡石对补强三元乙丙橡胶热氧稳定性的影响[J]. 材料研究学报, 2017, 31(11): 867-873.
Zhigang ZHAO, Qingguo TANG, Zhaogang ZENG, Shuang YANG, Jianfeng SUN, Jinsheng LIANG. Effect of Sepiolite on Thermo-oxidative Stability Performance of Reinforced EPDM[J]. Chinese Journal of Materials Research, 2017, 31(11): 867-873.

全文: PDF(832 KB)   HTML
摘要: 

以表面改性后的海泡石(OSP)作为三元乙丙橡胶(EPDM)的补强填料进行4因素3水平正交试验(L9(34)),研究了各因素对改性海泡石补强EPDM复合橡胶(OSP/EPDM)热氧稳定性能的影响。用热重-差热分析(TG-DTA)测定了OSP/EPDM氧化峰的峰值温度的变化,根据OSP/EPDM硫化胶的氧化反应和氧化反应动力学计算求得氧化反应表观活化能ΔE和反应速率常数KT,用Doyle氧化诱导期公式计算了氧化诱导期(OIT),并与橡胶在老化箱中的热老化实验结果比较。结果表明:求得的氧化诱导期t70与反应速率常数K70的结果十分吻合,与橡胶老化箱老化试验实测的老化系数变化的趋势相一致,证明根据t70能很好地评价OSP/EPDM的热氧稳定性。

关键词 复合材料海泡石三元乙丙橡胶热氧稳定性氧化诱导期老化试验    
Abstract

Effect of the addition of modified sepiolite on the thermal oxidative stability of the surface modified sepiolite reinforced ethylene propylene diene monomer rubber (OSP/EPDM) was investigated via the orthogonal experiment L9(34). The peak temperature variation for the oxidation process of OSP/EPDM is determined by thermogravimetric and differential thermal analysis (TG-DTA). The apparent activation energy (ΔE) and reaction rate constant (KT) were acquired via oxidation reaction test of the vulcanized rubber and oxidation reaction kinetics calculation, while the oxidation induction time (OIT) was calculated according to Doyle formula, which was compared with the experimental resultsof rubber aging test. The results show that the oxidation induction time (t70) are in good agreement with the reaction rate constant K70, and the calculated results are consistent to the experimental ones, indicating that the t70 could be applied to evaluate thermal oxidative stability of OSP/EPDM.

Key wordscomposite    sepiolite    ethylene propylene diene monomer    thermo-oxidative stability performance    oxidation induction time    aging experiment
收稿日期: 2016-11-03     
基金资助:资助项目河北省自然科学基金(E2013202142)和天津市自然科学基金重点项目(10JCZDJC223300)
作者简介:

赵志刚,男,1988年生,硕士生

No. RD/phr KH570/phr OSP/phr CB/phr S/phr
1 1.7 2 60 0 2.2
2 1.7 3 80 0 2.5
3 1.7 4 100 0 2.8
4 2 2 80 0 2.8
5 2 3 100 0 2.2
6 2 4 60 0 2.5
7 2.3 2 100 0 2.5
8 2.3 3 60 0 2.8
9 2.3 4 80 0 2.2
CB 1.7 3 0 80 2.5
表1  OSP/EPDM复合橡胶正交实验表
图1  试样2在空气和氮气气氛下的TG-DTA曲线
图2  表1中试样5在空气气氛中不同加热速率时的DTA曲线
No. Heating rate / ℃·min-1
5 10 15
1 261.87 275.51 279.89
2 257.87 271.30 283.30
3 257.20 272.69 278.30
4 260.59 276.93 282.89
5 256.77 270.55 280.12
6 264.53 278.24 290.22
7 257.86 274.11 283.91
8 265.06 279.52 289.02
9 265.06 274.21 284.95
CB 254.55 280.41 300.99
表2  不同加热速率条件下试样氧化峰的峰值温度Tp
No. E / kJ·mol-1 A / min-1 K70 / min-1 t70 / a R2
1 25.66 1.44×103 5.9×10-6 1.55 0.9531
2 49.81 1.52×106 8.95×10-10 5.55 0.9837
3 26.89 6.82×104 9.6×10-6 0.63 0.9664
4 26.15 3.14×104 2.23×10-5 0.36 0.9668
5 52.38 1.38×105 9.23×10-7 4.4 0.9990
6 24.33 1.73×104 1.21×10-4 0.17 0.9858
7 27.98 7.32×104 9.75×10-7 3.9 0.9994
8 27.73 8.17×104 1.66×10-6 2.32 0.9997
9 25.10 2.64×104 4.95×10-5 0.21 0.9971
CB 28.91 1.02×103 9.81×10-3 0.08 0.9948
表3  实验条件对各系数的影响
No. Before aging After aging / (70℃×24 h)
Tensile strength
/MPa
Elongation at break/% Hardness
/HA
Tensile strength
/MPa
Elongation at break/% Hardness
/HA
AC
1 6.77 277.79 67 7.67 274.82 68.5 1.1208
2 9.17 309.39 69 10 288.7 71.2 1.0176
3 11.03 269.95 73 11.61 221.6 76 0.864
4 8.17 305.98 68.5 9.36 309.23 71 1.1578
5 9.32 280.02 71.5 10.28 261.43 76 1.0298
6 7.27 273.95 66 8.76 292.2 70 1.2852
7 8.77 315.31 70 10.2 286.53 73.2 1.0984
8 7.42 320.66 64 7.92 268.87 70 0.8950
9 8.13 275.14 69 9.61 273.92 72.8 1.1768
CB 15.96 152.47 76 14.33 130.97 78 0.7713
表4  OSP/EPDM复合橡胶老化前后力学性能的对比
Range RD KH570 OSP S
AC 0.157 0.139 0.142 0.128
t70 2.104 1.630 3.753 0.934
表5  OSP/EPDM的AC和t70的极差分析
[1] N. Y. Ning, Q. Ma, Y. Q. Zhang, et al.Enhanced thermo-oxidative aging resistance of EPDM at high temperature by using synergistic antioxidants[J]. Polymer Degradation and Stability, 2014, 102(1): 1
[2] M. Rodriguez, J. Gonzalez, M. Munoz.Acid activation of a spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained[J]. Clay Miner, 1994, 29(3): 361
[3] E. Ruiz-Hitzky.Molecular access to intracrystalline tunnels of sepiolite[J]. Journal of Materials Chemistry, 2001, (11): 86
[4] G. Rytwo.Adsorption of monovalent organic cations on sepiolite: experimental results and model calculations[J]. Clays and Clay Minerals, 1998, 46(3): 340
[5] Luo B P, Ren B Y.Study on sepiolite surface modification and reinforcing properties for rubber[J]. Journal of Changsha University, 1999, 13(2): 27(罗北平, 任碧野. 海泡石表面改性及其对橡胶性能补强的研究[J]. 长沙大学学报, 1999, 13(2): 27)
[6] Y. P. Zheng, Y. Zheng.Study on sepiolite-reinforced polymeric nanocomposites[J]. Journal of Applied Polymer Science, 2010, 99(5): 2163
[7] M. Sugiura, M. Horii, H. Hayashi, et al.Application of sepiolite to prevent bleeding and blooming for EPDM rubber composition[J]. Applied Clay Science, 1996, 11(2): 89
[8] Zou D R.Study on application of sepiolite in formula of EPDM rubber[J]. Non-Metallic Mines, 2002, 25(5): 28(邹德荣. 海泡石在EPDM橡胶配方中的应用研究[J]. 非金属矿, 2002, 25(5): 28)
[9] Zhao Q L, Li X G, Gao J, et al.Aging Research of Ethylene-Propylene-Diene-Monomer (EPDM) Rubber[J]. Insulating Materials, 2010, 43(1): 37(赵泉林, 李晓刚, 高瑾等. 三元乙丙橡胶老化研究进展[J]. 绝缘材料, 2010, 43(1): 37)
[10] A. -M. Lepadatu, S. Asaftei, N. Vennemann. Investigation of new composite materials based on activated EPDM rubber waste particles by liquid polymers[J]. Journal of Applied Polymer Science, 2015, 132(25): 1
[11] C. Bétron, P. Cassagnau, B. -L. Véronique. Control of diffusion and exudation of vegetable oils in EPDM copolymers[J]. European Polymer Journal, 2016, 82: 102
[12] Zheng C C, Zuo P Y, Feng S H.Study on the thermo-oxidative aging performance of EPDM, ACM and EPDM/ACM[J]. China Rubber Industry, 2014, 61(12): 731(郑丛丛, 左培艳, 冯绍华. 三元乙丙橡胶、丙烯酸酯橡胶及其共混胶的热氧老化性能研究[J]. 橡胶工业, 2014, 61(12): 731)
[13] V. M. Archodoulaki, S. Lüftl, S. Seidler.Oxidation induction time studies on the thermal degradation behavior of polyoxymethylene[J]. Polymer Testing, 2006, 25: 83
[14] W. K. Wong, Y. G. Hsuan.Interaction of antioxidants with carbon black in polyethylene using oxidative induction time methods[J]. Geotextiles and Geomembranes, 2014, 42: 641
[15] M. Hoyos, P. Tiemblo, J. M.Gómez-Elvira, et al. Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene[J]. Polymer Degradation and Stability, 2006, 91: 1433
[16] D. S. Rosa, J. Sarti, L. H. I.Mei, et al. A Study of parameters interfering in oxidative induction time (OIT) results obtained by differential scanning calorimetry in polyolefin[J]. Polymer Testing, 2000, 19(5): 523
[17] Li P, Zhou S Y.Evaluation of antioxidants for chloroprene rubber by DTA[J]. China Synthetic Rubber Industry, 1989, 12(4): 227(李萍, 周述尧, 用差热分析方法评选CR防老剂[J]. 合成橡胶工业, 1989, 12(4): 227)
[18] Cao Y X, Zheng Q, Du M.Relationships between thermo-oxidation and dynamic rheological behavior of EPDM[J]. Acta Polymerica Sinica, 2005, 3: 408(曹艳霞, 郑强, 杜淼. EPDM受热氧化与动态流变行为[J]. 高分子学报, 2005, 3: 408)
[19] H. W. Chou, J. S. Huang, S. T. Lin.Effect of thermal aging on fatigue of carbon black-reinforced EPDM Rubber[J]. Journal of Applied Polymer Science, 2007, 103(2): 1244
[20] N. S. Tomer, F. Delor-Jestin, R. P. Singh, et al.Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber[J]. Polymer Degradation and Stability, 2007, 92(3): 457
[21] Chen E F, Deng W W, Han Y F, et al.Thermal aging behavior and prediction of BP neural network of EPDM rubber[J]. New Chemical Materials, 2010, 38(10): 80(陈尔凡, 邓雯雯, 韩云凤等. 三元乙丙橡胶的热老化行为及其BP神经网络预测[J]. 化工新型材料, 2010, 38(10): 80)
[22] Z. Peng, X. Liang, Y. Zhang.Reinforcement of EPDM by in situ prepared Zinc dimethacrylate[J]. Journal of Applied Polymer Science, 2002, 84: 1339
[23] S. Akhlaghi, M. Kalaee, S. Mazinani, et al.Effect of Zinc oxidenanoparticles on isothermal cure kinetics, morphology and mechanical properties of EPDM rubber[J]. Thermochim Acta, 2012, 527: 91
[24] P. H. Lye, H. K. Toh.Study of rubber oxidation by thermoanalysis[J]. Journal of Applied Polymer Science, 1984, 29: 2627
[25] C. D. Doyle.Estimating isothermal life from thermogravimetric data[J]. Journal of Applied Polymer, 1962, 6: 639
[26] Hu H H, Zhang Q R, Tian Y W.Improvement in the thermooxidation stability of EPDM rubber[J]. Journal of South China University of Technology (Natural Science), 1994, 22(6): 140(胡慧欢, 张庆荣, 田育武. 提高三元乙丙橡胶耐热老化性能的研究, 华南理工大学学报(自然科学版), 1994, 22(6): 140)
[27] Ge G J, Li C Q, Huang Z G, et al.Effect of silane coupling agents on properties of solution polymerized styrene-butadiene rubber/silica composite aged in hot air[J]. China Synthetic Rubber Industry, 2013, 36(4): 298(葛国杰, 李超芹, 黄兆阁等. 硅烷偶联剂对热空气老化过程中溶聚丁苯橡胶/白炭黑复合材料性能的影响[J]. 合成橡胶工业, 2013, 36(4):298)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.