Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 874-880    DOI: 10.11901/1005.3093.2016.636
  研究论文 本期目录 | 过刊浏览 |
氧化石墨烯接枝聚乙烯醇/热塑性聚氨酯复合材料的制备和性能
周醒1, 胡斌1, 肖文强1, 姜豪1, 张莉君1, 王正君1, 蔺海兰1, 卞军1(), 赵新为2
1 西华大学材料科学与工程学院成都 610039。
2 东京理科大学物理学部东京162-8601 日本。
Preparation and Properties of Composites of Polyvinyl Alcohol Grafted Graphene Oxide/thermoplastic Polyurethane
Xing ZHOU1, Bin HU1, Wenqiang XIAO1, Hao JIANG1, Lijun ZHANG1, Zhengjun WANG1, Hailai LIN1, Jun BIAN1(), Xinwei ZHAO2
1 School of Materials Science and Engineering, XiHua University, Chengdu 610039, China.
2 Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan.
引用本文:

周醒, 胡斌, 肖文强, 姜豪, 张莉君, 王正君, 蔺海兰, 卞军, 赵新为. 氧化石墨烯接枝聚乙烯醇/热塑性聚氨酯复合材料的制备和性能[J]. 材料研究学报, 2017, 31(11): 874-880.
Xing ZHOU, Bin HU, Wenqiang XIAO, Hao JIANG, Lijun ZHANG, Zhengjun WANG, Hailai LIN, Jun BIAN, Xinwei ZHAO. Preparation and Properties of Composites of Polyvinyl Alcohol Grafted Graphene Oxide/thermoplastic Polyurethane[J]. Chinese Journal of Materials Research, 2017, 31(11): 874-880.

全文: PDF(1096 KB)   HTML
摘要: 

以热塑性聚氨酯(TPU)为基体、以经聚乙烯醇(PVA)功能化接枝改性的氧化石墨烯(Graphene Oxide)为填料,用熔融共混法制备GO-g-PVA/TPU复合材料,使用FTIR,DSC, DMA和拉伸性能测试等手段表征了填料和复合材料的结构与性能。结果表明,加入GO-g-PVA提高了TPU的结晶温度,当GO-g-PVA含量(质量分数,下同)为4%时GO-g-PVA/TPU的结晶峰温度比纯TPU提高了28.8℃。当GO-g-PVA的含量超过1%后GO-g-PVA/TPU复合材料的定伸应力随着GO-g-PVA含量的增而增大,表明GO-g-PVA的加入改善了TPU的拉伸性能。GO-g-PVA的加入显著改善了复合材料的储能模量与损耗模量,提高了形状固定率(Rf)。GO-g-PVA含量为4%时Rf为87.5%,比纯TPU提高了20%;随着GO-g-PVA的加入50℃时GO-g-PVA/TPU复合材料的形状回复率(Rr)呈下降趋势,但是在较高温度下比较低温度有更高的Rr值。

关键词 复合材料热塑性聚氨酯功能化石墨烯熔融共混形状记忆    
Abstract

Composites of GO-g-PVA/TPU were prepared by using polyvinyl alcohol (PVA) grafted graphene oxide as filler and thermoplastic polyurethane (TPU) as matrix by melt blending method. The structure and properties of the resultant composites were characterized by means of FTIR, DSC, DMA and tensile tests. DSC tests show that the addition of GO-g-PVA increased the crystallization temperature of the composites. When the content (mass fraction%) of GO-g-PVA was 4%, the crystallization temperature of GO-g-PVA/TPU increased by 28.8℃ in contrast to that of the plain TPU. Tensile tests show that the modulus of GO-g-PVA/TPU composites increased with the increasing filler content when the content of GO-g-PVA was higher than 1%. DMA analysis indicated that GO-g-PVA enhanced the storage modulus and loss modulus of GO-g-PVA/TPU composites. Shape memory properties results show that the addition of GO-g-PVA significantly improved the shape fixed rate (Rf) of the composites. When the content of GO-g-PVA was 4%, the Rf of the composite was 87.5%, which increased by 20% compared with that of pure TPU. However, with the increasing amount of GO-g-PVA the shape recovery ratio (Rr) of the composite decreased generally at 50℃, and the composites showed higher Rr value at high temperature rather than at low temperature.

Key wordscomposites    thermoplastic polyurethane    functionalized graphene    melt blending    shape memory
收稿日期: 2016-11-01     
基金资助:资助项目四川省教育厅一般科研项目(17ZB0422)四川省高校重点实验室开放研究基金项目(SZjj2017-066, SZjj2015-086)国家级/省级大学生创新创业训练计划项目(201710623098, 201510623033)西华大学“青年学者培养计划”基金(01201404)
作者简介:

周醒,男,1992年生,硕士

图1  氧化石墨和GO-g-PVA的红外光谱图
图2  制备GO-g-PVA的反应机理图
图3  (a)GO,PVA,GO-g-PVA和(b)TPU、质量分数为4%的GO-g-PVA/TPU复合材料的XRD图谱
图4  不同GO-g-PVA含量的GO-g-PVA/TPU复合材料的结晶曲线和熔融曲线
GO-g-PVA/% 0 0.5 4
Tc/℃ 83.4 84.2 112.0
Tm/℃ 165.5 165.9 167.5
表1  含不同质量分数GO-g-PVA的GO-g-PVA/TPU复合材料的DSC测试结果
图5  含不同质量分数GO-g-PVA的GO-g-PVA/TPU复合材料的DMA曲线
图6  填料含量对GO-g-PVA/TPU定伸应力(300%、500%和1000%)的影响
Content of GO-g-PVA /% 0 0.25 0.5 1 2 4
shape fixed rate Rf/% 73.1 85.2 86.1 86.4 84.2 87.5
50℃ shape recovery rateRr1/% 79.6 76.1 74.8 68.0 72.7 72.2
80℃ shape recovery rateRr2/% 85.1 85.2 87 83.8 84.6 84.4
100℃ shape recovery rateRr3/% 88.7 88.4 89.2 86.8 89.2 89.4
表2  GO-g-PVA/TPU的形状记忆性能
[1] Kim H, Miura Y, Macosko C W.Graphene/Polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441
[2] Zuo L, Chen D J.Research progress of shape memory polyurethane[J]. Polymeric Materials Science & Engineering, 2004, 20(6): 37(左兰, 陈大俊. 形状记忆聚氨酯的研究进展[J]. 高分子材料科学与工程, 2004, 20(6): 37)
[3] Yang Y H, Sun H J, Peng T J.Synthesis and structural characterization of graphene by oxidation reduction[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(11): 2083(杨永辉, 孙洪娟, 彭同江. 石墨烯的氧化还原法制备及结构表征[J]. 无机化学学报, 2010, 26(11): 2083)
[4] Banhart F, Kotakoski J, Krasheninnikov A V.Structural defects in graphene[J]. ACS nano, 2010, 5(1): 26
[5] Hashimoto A, Suenaga K, Gloter A, et al.Direct evidence for atomic defects in graphene layers[J]. Nature, 2004, 430(7002): 870
[6] Cao Y, Li G T, Li X B.Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications[J]. Chemical Engineering Journal, 2016, 292: 207
[7] Zhou X, Wang Z J, Lin H L, et al.Research progress on the shape memory property of polyurethane and it's composites[J]. China Plastics Industry, 2015, 43(9): 19(周醒, 王正君, 蔺海兰等. 聚氨酯及其复合材料形状记忆性能的研究进展[J]. 塑料工业, 2015, 43(9): 19)
[8] Wu C, Huang X, Wang G, et al.Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites[J]. Journal of Materials Chemistry, 2012, 22(14): 7010
[9] Kim H, Miura Y, Macosko C W.Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441
[10] Raja M, Ryu S H, Shanmugharaj A M.Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites[J]. European Polymer Journal, 2013, 49(11): 3492
[11] Han S, Chun B C.Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 65
[12] You F, Wang D, Li X, et al.Interfacial engineering of polypropylene/graphene nanocomposites: improvement of graphene dispersion by using tryptophan as a stabilizer[J]. RSC Advances, 2014, 4(17): 8799
[13] Bao C, Guo Y, Yuan B, et al.Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies[J]. Journal of Materials Chemistry, 2012, 22(43): 23057
[14] He H, Gao C.General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry[J]. Chemistry of Materials, 2010, 22(17): 5054
[15] Bian J, Lin H L, He F X, et al.Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic polyurethane nanocomposites: effects of filler on morphology, mechanical, thermal and conductive properties[J]. Composites : Part A, 2013, 47(1): 72
[16] Hei F X, Bian J, Lin H L, et al.TPU/TRG nanocomposites prepared by masterbatch-melting compounding process[J]. Journal of Xihua University: Natural Science Edition, 2014, 33(6): 57(何飞雄, 卞军, 蔺海兰等. 母料-熔融共混法制备TPU/TRG纳米复合材料[J]. 西华大学学报:自然科学版, 2014, 33(6): 57)
[17] Lin H L, Zhu Q L, Bian J, et al.Preparation and properties of blended graphene oxide-nano SiO2/TPU composites[J]. Acta Materiae Compositae Sinica, 2016, 33(07): 1382(蔺海兰, 朱庆兰, 卞军等. 共混型石墨烯-nano SiO2/TPU复合材料的制备与性能[J]. 复合材料学报, 2016, 33(07): 1382)
[18] Hummers Jr W S,Offeman R E. Preparation of graphitic oxide[J]. Journal of American Society, 1958, 80(6): 1339
[19] Jiang D F.Study on the structure and properties of carbon nanotubes filled polyurethane and preparation of polyurethane/carbon nanotubes Nanocomposites[D]. Beijing University of Chemical Technology, 2009(江凤丹. 聚氨酯/碳纳米管纳米复合材料的制备及结构与性能研究[D]. 北京化工大学, 2009)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.