Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 429-436    DOI: 10.11901/1005.3093.2016.625
  本期目录 | 过刊浏览 |
氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响
陈爱莲1,李泽锋2,陈杨2()
1 常州大学机械工程学院 常州 213164
2 常州大学材料科学与工程学院 常州 213164
Influence of Silica-core Structure on Polishing Characteristics of Core/shell Structured Composite Particles of SiO2/CeO2
Ailian CHEN1,Zefeng LI2,Yang CHEN2()
1 School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
2 School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
引用本文:

陈爱莲,李泽锋,陈杨. 氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响[J]. 材料研究学报, 2017, 31(6): 429-436.
Ailian CHEN, Zefeng LI, Yang CHEN. Influence of Silica-core Structure on Polishing Characteristics of Core/shell Structured Composite Particles of SiO2/CeO2[J]. Chinese Journal of Materials Research, 2017, 31(6): 429-436.

全文: PDF(4478 KB)   HTML
摘要: 

设计合成了以具有放射状介孔孔道(孔径约2.6 nm)的介孔氧化硅(mSiO2)微球(粒径约300 nm)为内核、以CeO2纳米颗粒为包覆层(壳厚为15~20 nm)的mSiO2/CeO2复合颗粒(粒径在330~340 nm),使用场发射扫描电镜、透射电镜、X射线衍射、傅里叶转换红外光谱和氮气吸脱附等手段表征了样品的结构。结果表明,使用以实心氧化硅(sSiO2)为内核的sSiO2/CeO2复合颗粒抛光的热氧化硅片其表面粗糙度均方根值(Root-mean-square roughness, RMS)为0.309 nm,材料的去除率(Material removal rate, MRR)为24 nm/min)。mSiO2/CeO2复合颗粒有利于得到更低的氧化硅片抛光表面粗糙度(RMS=0.267 nm)和更高的抛光速率(MRR=45 nm/min),且能避免出现划痕等机械损伤。SiO2/CeO2复合颗粒中的氧化硅内核结构,对其抛光特性有明显的影响。

关键词 无机非金属材料氧化硅氧化铈核壳结构复合颗粒抛光    
Abstract

The composite particles of mSiO2/CeO2(330-340 nm in size) were prepared by applying CeO2 nanoparticles coating (15-20 nm in thickness) on core material of mesoporous silica (mSiO2, ca. 300 nm in size) with radial mesochannels (ca. 2.6 nm in pore size). The prepared composite particles were characterized by transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The results show that the oxidized silicon wafer substrates was polished comparatively with when taking mSiO2/CeO2 composite particles or sSiO2/CeO2 composite particles(solid silica core) as polishing paste, the polished pre-oxidized silicon wafer presented had a lower root-mean-square roughness(RMS=0.267 nm) and a higher material removal rate(MRR=45 nm/min) for the former paste, in the contrast, than those of the sSiO2/CeO2 composite particles with solid silica cores(RMS=0.309 nm and MRR=24 nm/min for the later one. Furthermore, the mSiO2/CeO2 composite particles may be beneficial were attributed to the elimination of mechanical damages (such as scratches) on the wafer surface. The very structure of silica core of mSiO2/CeO2 composite particles presented obvious effects for their polishing characteristics.

Key wordsinorganic non-metallic material    silica    ceria    core-shell structure    composite particle    polishing
收稿日期: 2016-10-25     
基金资助:国家自然科学基金(51205032, 51405038, 51575058)
Carrier pressure/psi Head speed/(rmin-1) Slurry flow rate /mLmin-1 Polishing time/min Platen speed/(rmin-1) Polishing pad model
3.3 120 100 1 90 MD Chem (Struers)
表1  抛光试验参数
图1  煅烧前后mSiO2样品的红外吸收光谱图
图2  mSiO2微球的TEM照片
图3  mSiO2样品的氮气吸附-脱附等温线和插入的孔径分布曲线以及小角XRD图谱
图4  所得样品的XRD图谱
图5  mSiO2/CeO2(a)和sSiO2/CeO2(b)复合颗粒样品的TEM照片
图6  mSiO2、 mSiO2/CeO2、sSiO2和sSiO2/CeO2样品的FESEM照片
图7  mSiO2/CeO2复合颗粒样品的XPS全扫描图谱
图8  使用sSiO2/CeO2(a)和mSiO2/CeO2(b)复合颗粒抛光的工件表面的AFM二维、三维形貌和微观轮廓曲线
[1] Jano? P, Ederer J, Pila?ová V, et al. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency [J]. Wear, 2016, 362-363: 114
[2] Zhang Z F, Yu L, Liu W L, et al.Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate[J]. Appl. Surf. Sci., 2010, 256(12): 3856
[3] Praveen B V S, Cho B J, Park J G, et al. Effect of lanthanum doping in ceria abrasives on chemical mechanical polishing selectivity for shallow trench isolation[J]. Mat. Sci. Semicon. Proc., 2015, 33: 161
[4] Song X, Jiang N, Li Y, et al.Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension[J]. Mater. Chem. Phys., 2008, 110(1): 128
[5] Chen Y, Long R W, Chen Z G.Synthesis and application of CeO2-coated SiO2 composite abrasives[J]. Chin. J. Nonferrous Met., 2010, 20(1): 163
[5] (陈杨, 隆仁伟, 陈志刚. 包覆结构CeO2/SiO2复合磨料的合成及其应用[J]. 中国有色金属学报, 2010, 20(1): 163)
[6] Zhang Z F, Liu W L, Zhu J K, et al.Synthesis, characterization of ceria-coated silica particles and their chemical mechanical polishing performance on glass substrate[J]. Appl. Surf. Sci., 2010, 257(5): 1750
[7] Peedikakkandy L, Kalita L, Kavle P, et al.Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application[J]. Appl. Surf. Sci., 2015, 357: 1306
[8] Chen Y, Lu J X, Chen Z G.Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives[J]. Microelectron. Eng., 2011, 88(2): 200
[9] Chen Y, Li Z N, Miao N M.Polymethylmethacrylate(PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance[J]. Tribol. Int., 2015, 82: 211
[10] Chen Y, Li Z N, Miao N M.Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization[J]. Appl. Surf. Sci., 2014, 314: 180
[11] Williford R E, Li X S, Addleman R S, et al.Mechanical stability of templated mesoporous silica thin films[J]. Micropor. Mesopor. Mat., 2005, 85(3): 260
[12] Guo D, Li J, Xie G, et al.Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: Size effect and error analysis[J]. Langmuir, 2014, 30(24): 7206
[13] Guo X Z, Shan J Q, Ding L, et al.Preparation and characterization of hierarchically porous silica monoliths[J]. Chinese J. Inorg. Chem., 2015, 31(4): 635
[13] (郭兴忠, 单加琪, 丁力等. 阶层多孔二氧化硅块体材料的制备与表征[J]. 无机化学学报, 2015, 31(4): 635)
[14] Blas H, Save M, Pasetto P, et al.Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: Radial orientation of mesopore channels[J]. Langmuir, 2008, 24(22): 13132
[15] Yang J, Shen D, Zhou L, et al.Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release[J]. Chem. Mater., 2013, 25(15): 3030
[16] Zhang K, Xu L L, Jiang J G, et al.Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure[J]. J. Am. Chem. Soc., 2013, 135(7): 2427
[17] Kong G, Zhang S H, Sun Z W, et al.Effect of size of silica powder on preparation of silicate conversion coatings on galvanized steel[J]. Chin. J. Mater. Res., 2014, 28(6): 462
[17] (孔纲, 张双红, 孙子文等. 二氧化硅粉体粒度对硅酸盐转化膜制备的影响[J]. 材料研究学报, 2014, 28(6): 462)
[18] Chen F, Chen Z G, Qian J C, et al.Hierarchical porous ceria synthesized by maple leaf templates and its catalytic performance[J]. J. Inorg. Mater., 2012, 27(1): 69
[18] (陈丰, 陈志刚, 钱君超等. 以枫叶为模板合成分级多孔氧化铈材料及其催化性能[J]. 无机材料学报, 2012, 27(1): 69)
[19] Zhang J, Jiang X L, Yu L, et al.Ceria hollow nanospheres synthesized by hydrothermal method and their adsorption capacity[J]. Chin. J. Mater. Res., 2016, 30(5): 365
[19] (张姣, 江学良, 余露等. 水热法制备二氧化铈纳米空心球及其吸附性能研究[J]. 材料研究学报, 2016, 30(5): 365)
[20] Cook L M.Chemical processes in glass polishing[J]. J. Non-Cryst. Solids, 1990, 120(1-3): 152
[21] Chen Y, Qian C, Miao N M.Atomic force microscopy indentation to determine mechanical property for polystyrene-silica core-shell hybrid particles with controlled shell thickness[J]. Thin Solid Films, 2015, 579: 57
[22] Romeis S, Paul J, Herre P, et al.In situ deformation and breakage of silica particles inside a SEM[J]. Procedia Engineering, 2015, 102: 201
[23] Li W, Li F Y, Shi Z S, et al.Preparation and characterization of strong-lightweight porous silica spheres in millimeter scale[J]. Chem. J. Chinese Universities, 2015, 36(9): 1655
[23] (李娃,李凤云,史志胜等. 毫米级轻质高强度多孔二氧化硅球的制备与表征[J]. 高等学校化学学报, 2015, 36(9): 1655)
[24] Chen X, Zhao Y, Wang Y.Modeling the effects of particle deformation in chemical mechanical polishing[J]. Appl. Surf. Sci., 2012, 258(22): 8469
[25] Xu J, Luo J B.An investigation on the monocrystalline silicon surface damage caused by slurry erosion[J]. Tribology, 2006, 26(1): 7
[25] (徐进,雒建斌. 含纳米粒子溶液对单晶硅表面的冲蚀磨损损伤实验研究[J]. 摩擦学学报, 2006, 26(1): 7)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.