Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 853-859    DOI: 10.11901/1005.3093.2016.624
  研究论文 本期目录 | 过刊浏览 |
均匀化态GH3625合金熔化和凝固过程中的相变
丁雨田, 豆正义(), 高钰璧, 高鑫, 李海峰, 刘德学
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室兰州 730050
Phase Transformation during Metling and Solidifying Process of Homogenized Superalloy GH3625
Yutian DING, Zhengyi DOU(), Yubi GAO, Xin GAO, Haifeng LI, Dexue LIU
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

丁雨田, 豆正义, 高钰璧, 高鑫, 李海峰, 刘德学. 均匀化态GH3625合金熔化和凝固过程中的相变[J]. 材料研究学报, 2017, 31(11): 853-859.
Yutian DING, Zhengyi DOU, Yubi GAO, Xin GAO, Haifeng LI, Dexue LIU. Phase Transformation during Metling and Solidifying Process of Homogenized Superalloy GH3625[J]. Chinese Journal of Materials Research, 2017, 31(11): 853-859.

全文: PDF(3649 KB)   HTML
摘要: 

使用差示扫描量热仪(DSC)、共聚焦激光扫描显微镜(CLSM)、扫描电镜(SEM)、和能谱分析仪(EDS)等手段研究了均匀化态GH3625合金在熔化和凝固过程中的组织演变以及主要相的溶解和析出。结果表明:定制的二段式均匀化工艺基本上消除了GH3625合金中的低熔点laves相和微观元素偏析;均匀化态GH3625合金的初熔温度明显提高,熔化先发生在晶界、表面、缩孔及碳化物(NbC)区域;GH3625合金的凝固过程分为三个阶段,主要发生了L→γ、L→γ+MC和L→γ+laves的结晶反应;γ相的形核属于非均匀形核,使溶质原子易偏聚于晶界,从而在枝晶间不可避免的形成了元素偏析和相偏析,其中低熔点laves相的析出类型主要与冷却速率有关。

关键词 金属材料GH3625合金共聚焦激光扫描显微镜均匀化态熔化凝固    
Abstract

The microstructure evolution, and the dissolution and precipitation of the main phase of the homogenized superalloy GH3625 during melting and solidifying process were investigated by means of differential scanning calorimetry (DSC), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the twostep homogenization process is effective for eliminating the laves phase of low-melting point and the segregation in micro-scale for alloying elements of the superalloy GH3625; The initial melting temperature of the homogenized superalloy GH3625 is obviously improved, and the melting occurs firstly in the regions such as grain boundary, surface, shrinkage cavity and carbide (NbC) etc.. The solidification process of the alloy GH3625 can be divided into three stages, and which correspond to mainly the crystallization reactions such as L→γ, L→γ+MC and L→γ+laves. The nucleation of γ phase belong to heterogeneous nucleation, so that solute atoms easily segregate at grain boundaries, which in the dendrites inevitably formed elemental segregation and phase segregation. The precipitation type of the low melting point laves phase is mainly related to the cooling rates.

Key wordsmetallic materials    superalloy GH3625    confocal laser scanning microscopy    homogenized    melting    solidification
收稿日期: 2016-10-25     
基金资助:资助项目国家自然科学基金(51661019)和甘肃省重大专项(145RTSA004)
作者简介:

丁雨田,男,1962年生,教授

C P S Cr Fe Mo Nb Al Ti Ni
0.042 0.006 0.0006 21.77 3.68 8.79 3.75 0.21 0.40 Bal.
表1  GH3625合金铸锭的化学成分(质量分数,%)
图1  GH3625合金均匀化前后的组织
Element Nb Mo Ti Cr Al
Dendrite/% 1.41 8.47 0.24 23.14 0.20
Interdendritic/% 4.43 16.04 0.33 17.11 0.27
K 3.14 1.89 1.37 0.74 1.35
表2  GH3625合金铸锭主要元素在不同位置的含量(%)及偏析系数(K)
图2  GH3625合金的DSC曲线
625 Alloy Liquidus(TL) Solidus(TS) MC Laves phase
Heating 1361℃ 1309℃ 1277℃ -
Cooling 1358℃ 1311℃ 1297.6℃ 1150.8℃
表3  凝固过程中各相反应温度(10 K/min)
图3  GH3625合金熔化和凝固过程中的组织变化
图4  GH3625合金凝固过程中的液相分数与温度和时间的关系
图5  GH3625合金的凝固组织
Cooling rates/℃·s Segregation coefficient/K
of Nb
Precipitation temperature of MC/℃
Ingot 20.8 3.14 1285
Samples 1.67 3.35 1297.6
表4  两种情况下GH3625合金凝固后的参数对比
[1] Guo J T.Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008(郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2008)
[2] Penkalla H J, Wosik J, Czyrska-Filemonowicz A.Quantitative microstructural characterisation of Ni-base superalloys[J]. Mater. Chem. Phys., 2003, 81(2-3):417
[3] Li X H, Zhang Y, Hou X Q, et al.Effect of homogenization temperatures on the microstructure and stress-rupture properties of K4169 alloy[J]. Rare Met. Mater. Eng., 2014, 43(1): 199(李相辉, 张勇, 侯学勤等. 均匀化温度对K4169合金显微组织和持久性能的影响[J]. 稀有金属材料与工程, 2014, 43(1): 199)
[4] Miao Z J, Shan A D, Wu Y B, et al.Quantitative analysis of homogenization treatment of INCONEL718 superalloy[J]. T. Nonferr. Metal. Soc., 2011, 21(5): 1009
[5] Wang L, Dong J X, Tian Y L, et al.Microsegregation and Rayleigh number variation during the solidification of superalloy Inconel 718[J]. INT. J. Min. Met. Mater., 2008, 15(5): 594
[6] Tian Y L, Wang L, Dong J X, et al.Microsegregation of GH742 ingot and the element distribution during homogenizing treatment[J]. Rare Met. Mater. Eng., 2006, 35(8): 1315(田玉亮, 王玲, 董建新等. GH742 铸锭偏析及均匀化过程中元素分布规律[J]. 稀有金属材料与工程, 2006, 35(8): 1315)
[7] Liang G, Zhu L Y, Wang C Q, et al.In situ observation of δ→γ transformation in the stainless steel AISI 304[J]. Acta Metall. Sin., 2007, 43: 119(梁高, 朱丽业, 王成全等. AISI 304不锈钢中δ→γ相变的原位观察[J]. 金属学报, 2007, 43: 119)
[8] Aminorroaya S, Dippenaar R.A novel approach to simulate segregation at the centerline of continuously cast steel using laser-scanning confocal microscopy[J]. J. Microsc., 2007, 227(2): 87
[9] Shibata H, Emi T.In-site observation of engulfment and pushing of nonmetallic inclusion in steel melt by advancing melt/solid interface[J]. ISIJ. INT.,1998, 38(2): 149
[10] Huang Q J, Liu G Q.Application of microsoft word in quantitative microstructure analysis[J]. Chinese Journal of Stereology and Image Analysis. 2002, 7(3): 182(黄启今, 刘国权. 通用软件Microsoft Word 在显微组织定量分析中的应用[J]. 中国体视学与图像分析, 2002, 7(3): 182)
[11] Cowen C J, Danielson P E, Jablonski P D.The microstructural evolution of Inconel alloy 740 during solution treatment, aging, and exposure at 760℃[J]. J. Mater. Eng. and Perform., 2011, 20(6): 1078
[12] Pan X L, Wang B, Sun W R, et al.Effect of homogenizing treatment on the hot deformation of GH742 alloy[J]. Acta Metall. Sin., 2012(11): 1403(潘晓林, 汪波, 孙文儒等. 均匀化处理对GH742合金热变形行为的影响[J]. 金属学报, 2012(11): 1403)
[13] Semiatin S L, Kramb R C, Turner R E, et al.Analysis of the homogenization of a nickel-base superalloy[J]. Scripta Mater., 2004, 51(6): 491
[14] Ning L K, Zheng Z, Jin T, et al.Effect of heat treatments on the microstructure and property of a new nickel base single crystal superalloy[J]. Acta Metall. Sin., 2014, 50(8): 1011(宁礼奎, 郑志, 金涛等. 热处理对一种新型镍基单晶高温合金组织与性能的影响[J]. 金属学报, 2014, 50(8): 1011)
[15] Liang G F, Wang C Q, Fang Y.In situ observation on movement and aggregation of inclusion in solid-liquid mush zone during melting of stainless steel AISI 304[J]. Acta Metall. Sin., 2006, 42(7): 708(梁高飞, 王成全, 方园. AISI 304不锈钢熔化过程中夹杂物在固-液糊状区漂移与聚集行为的原位观察[J]. 金属学报, 2006, 42(7): 708)
[16] Hu G X, Cai X. Materials Science Foundation, Materials Science Foundation(Third Edition) [M]. Shanghai: Shanghai Jiaotong University Press, 2000(胡赓祥, 蔡询. 材料科学基础(第三版)[M]. 上海: 上海交通大学出版社, 2000
[17] Miao Z J.Study on solidification segregation and homogenization process of IN718 series superalloy [D]. Shanghai: Shanghai Jiaotong University, 2011(繆竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[D]. 上海: 上海交通大学, 2011)
[18] M. Flemings.Solidification Processing[M]. NewYork: McGraw-Hill, 1974
[19] Cao G X, Zhang M C, Dong J X, et al.Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes[J]. Rare Met. Mater. Eng., 2014, 43(1): 103(曹国鑫, 张麦仓, 董建新等. Nb含量对 GH4169 合金钢锭凝固及均匀化过程相演化规律的影响[J]. 稀有金属材料与工程, 2014, 43(1): 103)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.