Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (10): 751-757    DOI: 10.11901/1005.3093.2016.617
  研究论文 本期目录 | 过刊浏览 |
石墨烯/硬脂酸超疏水复合膜层的防腐性能
陈宁宁, 王燕华(), 钟莲, 杨培培, 王佳
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Anticorrosion Performance of Super-Hydrophobic Complex Film of Graphene/stearic Acid on AZ91 Mg-alloy
Ningning CHEN, Yanhua WANG(), Lian ZHONG, Peipei YANG, Jia WANG
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

陈宁宁, 王燕华, 钟莲, 杨培培, 王佳. 石墨烯/硬脂酸超疏水复合膜层的防腐性能[J]. 材料研究学报, 2017, 31(10): 751-757.
Ningning CHEN, Yanhua WANG, Lian ZHONG, Peipei YANG, Jia WANG. Anticorrosion Performance of Super-Hydrophobic Complex Film of Graphene/stearic Acid on AZ91 Mg-alloy[J]. Chinese Journal of Materials Research, 2017, 31(10): 751-757.

全文: PDF(920 KB)   HTML
摘要: 

用溶液共混法制备石墨烯/硬脂酸(G/SA)共混溶液,再将其滴涂在微弧氧化后的AZ91镁合金表面制备出超疏水复合膜。用扫描电子显微镜、接触角测量仪和傅立叶红外光谱仪等手段表征了复合膜层的表面形貌、润湿性能以及化学组成,并对微弧氧化膜层和复合膜层进行了阻抗谱和极化测试。结果表明: 石墨烯/硬脂酸共混溶液滴涂后使多孔的超亲水微弧氧化膜层转变为具有微/纳米结构的超疏水复合膜层,静态接触角达到162°;复合膜层的腐蚀电流密度降低了4个数量级,电荷转移电阻增加了4个数量级,且能对镁合金提供有效的腐蚀保护。

关键词 材料失效与保护镁合金微弧氧化复合膜层超疏水腐蚀行为    
Abstract

A super-hydrophobic complex film was prepared on AZ91 Mg-alloy by a two-step process, i.e. first micro-arc oxidizing (MAO) and then applying blended mixture of graphene/stearic acid (G/SA). The surface wettability, morphology and chemical composition of the super-hydrophobic film were characterized by contact angle measurement, scanning electron microscope and FT-IR spectrometer. After applying the G/SA composite, the hydrophilic porous surface of MAO layer could be transformed into a super-hydrophobic one with static contact angle of 162°. In comparison with the bare Mg-alloy, the corrosion current density decreased and the electrochemical impedance increased by four orders of magnitude for the AZ91 alloy with the super-hydrophobic complex film. The high corrosion resistance can be attributed to the high insulation of the MAO film and the blocking effect of graphene.

Key wordsmaterials failure and protection    magnesium alloy    micro-arc oxidation    complex film    super-hydrophobic    corrosion behavior
收稿日期: 2016-12-19     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51131005、40906039)、山东省优秀中青年科学家奖励基金(BS2012HZ021)
作者简介:

作者简介 陈宁宁,女,1991年生,硕士生

图1  各试样的表面形貌和接触角
图2  硬脂酸薄膜和石墨烯/硬脂酸薄膜FTIR图
图3  各试样在3.5 wt.%NaCl溶液中的动电位极化曲线
Sample Ecorr
/VSCE
icorr
/Acm-2
ba
/mV
bc
/mV
Rp
/Ωcm-2
Bare AZ91 substrate -1.58 7.87×10-5 30.3 127.7 1.35×102
MAO intermediate layer -1.49 1.59×10-6 32.5 240.5 7.82×103
SA composite film -1.46 1.06×10-7 92.7 246.4 2.76×105
G/SA composite film -1.18 2.90×10-9 485.2 242.8 2.42×107
表1  各试样在3.5%NaCl溶液中的动电位极化电化学参数
图4  各试样在3.5%NaCl溶液中的电化学阻抗Nyquist图
图5  各试样的等效电路图
图6  各试样在3.5%NaCl溶液中的电化学阻抗Bode图
图7  各试样在3.5%NaCl溶液中168 h浸泡前后表面形貌图
[1] Z. Yang, J. P. Zhang, G. W. Lorimer, et al., Review on research and development of magnesium alloys[J]. Acta Metallurgica Sinica, 2008, 21(5): 313
[2] I. J. Polmear, Magnesium alloys and applications[J]. Materials Science and Technology, 1994, 10(1): 1
[3] B. L. Mordike, T. Ebert, Magnesium properties — applications — potential[J]. Materials Science and Engineering, 2001, 302(1): 37
[4] C. Zhong, F. Liu, Y. Wu, J. Le, L. Liu, M. He, J. Zhu, W. Hu, Protective diffusion coatings on magnesium alloys: A review of recent developments[J]. Journal of Alloys and Compounds, 2012, 520(13): 11
[5] J. Le, L. Liu, Y. Deng, et al., Interdiffusion kinetics of the intermetallic coatings on AZ91D magnesium alloy formed in molten salts at lower temperatures[J]. Journal of Alloys and Compounds, 2014, 610(27): 173
[6] R. O. Hussein, D. O. Northwood, X. Nie, The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys[J]. Surface and Coatings Technology, 2013, 237(25): 357
[7] J. Cai, F. Cao, L. Chang, et al., The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film[J]. Applied Surface Science, 2011, 257(8): 3804
[8] Y. Tang, X. Zhao, K. Jiang, et al., The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment[J]. Surface and Coatings Technology, 2010, 205(6): 1789
[9] X. Cui, X. Lin, C. Liu, et al., Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corrosion Science, 2015, 90: 402
[10] S. Wang, X. Guo, Y. Xie, et al., Preparation of superhydrophobic silica film on Mg-Nd-Zn-Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol-gel method[J]. Surface and Coatings Technology, 2012, 213(213): 192
[11] Z. Kang, X. Lai, J. Sang, et al., Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating[J]. Thin Solid Films, 520(2), 800(2011)
[12] S. V. Nedenkov, S. V. Egorkin, S. L. Sinebryukhov, et al., Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg-Mn-Ce magnesium alloy[J]. Surface and Coatings Technology, 2013, 232(10): 240
[13] C. Wang, B. Jiang, M. Liu, et al., Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2015, 621: 53
[14] P. Dhiraj, C. T. Juan, R. H. Robert, et al., Correction to graphene: corrosion-inhibiting coating[J]. American Chemical Society, 2012, 6(5): 1102
[15] L. Gu, J. H. Ding, H. B. Yu, Research in Graphene-based anticorrosion coatings[J]. Progress in Chemistry, 2016, 28(5): 737
[16] T. Yao, B. Siva, S. Mo, Graphene based materials and their composites as coatings[J]., Austin J. Nanomed Nanotechnol., 2013, 1(1): 1003
[17] N. T. Kirkland, T. Schilier, N. Medhekar, et al., Exploring graphene as a corrosion protection barrier[J]. Corrosion Science, 2012, 56(3)
[18] H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J]. Electrochimica Acta, 2007, 52(11): 3785
[19] Sun X D, Liu G, Li L Y, et al., Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chinese Journal of Materials Research, 2015, 29(07): 523(孙小东, 刘刚, 李龙阳, 等, 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29(07): 523)
[20] W. F. Ng, M. H. Wong, F. T. Cheng, Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution[J]. Surface and Coatings Technology, 2010, 204(11): 1823
[21] J. Y. Jiang, J. L. Xu, Z. H. Liu, et al., Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys[J]. Applied Surface Science, 2015, 347(1): 591
[22] Y. Liu, X. Yin, J Zhang, et al., A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochimica Acta, 2014, 125(12): 395
[23] T. S. Lim, H. S. Ryu, S. Hong, Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation[J]. Corrosion Science, 2012, 62(9): 104
[24] Q. Sun, H. Liu, T. Chen, et al., Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath[J]. Applied Surface Science, 2016, 369: 277
[1] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[2] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[3] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[4] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[7] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[8] 刘洋, 康锐, 冯小辉, 罗天骄, 李应举, 冯建广, 曹天慧, 黄秋燕, 杨院生. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能[J]. 材料研究学报, 2022, 36(1): 13-20.
[9] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[10] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[11] 顾佳卿, 唐伟能, 徐世伟. Mg-0.4Zn镁合金挤压板拉伸变形组织的演变[J]. 材料研究学报, 2021, 35(7): 553-560.
[12] 王扬, 张磊, 王磊, 张妍, 汤庆国, 杜特, 焦万学, 冯雪彬. 海泡石超疏水复合涂层的制备和性能[J]. 材料研究学报, 2021, 35(12): 942-950.
[13] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[14] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[15] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.