Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 526-536    DOI: 10.11901/1005.3093.2016.588
  研究论文 本期目录 | 过刊浏览 |
聚氨酯涂层对复合材料层板冲击后压缩性能的影响
郭瑞彦1, 张国利1(), 岳海亮1, 陈联云2
1 天津工业大学复合材料研究所 教育部先进纺织复合材料共建重点实验室 天津 300387
2 中航工业航宇救生装备有限公司 襄阳 441003
Evaluation of Compression after Impact on Composite Laminates Coated with PU
Ruiyan GUO1, Guoli ZHANG1(), Hailiang YUE1, Huan MA1, Lianyun CHEN2
1 Key Laboratory of Advanced Textile Composites, Tianjin and Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
2 AVIC Aerospace Life Support Industries, LED, Xiangyang, 441003, China
引用本文:

郭瑞彦, 张国利, 岳海亮, 陈联云. 聚氨酯涂层对复合材料层板冲击后压缩性能的影响[J]. 材料研究学报, 2017, 31(7): 526-536.
Ruiyan GUO, Guoli ZHANG, Hailiang YUE, Huan MA, Lianyun CHEN. Evaluation of Compression after Impact on Composite Laminates Coated with PU[J]. Chinese Journal of Materials Research, 2017, 31(7): 526-536.

全文: PDF(7603 KB)   HTML
摘要: 

对聚氨酯喷涂复合材料层板进行反复低速冲击试验和冲击后压缩试验,研究了损伤程度、层板厚度和涂层厚度对聚氨酯喷涂复合材料层合板冲击后压缩强度的影响,并通过数字图像相关(DIC)检测压缩过程分析了不同损伤程度试样的破坏过程和破坏模式。结果表明:随着冲击次数的增加冲击后压缩强度存在拐点,随着层合板厚度的增加试样的冲击后压缩强度降低,随着涂层厚度的增加含聚氨酯的试样冲击后压缩强度明显提高;压缩破坏位置与损伤程度有关,试样的损伤程度不同其压缩破坏过程也不同。

关键词 复合材料聚氨酯涂层层合板厚度冲击后压缩强度损伤拐点压缩破坏模式    
Abstract

The tests of repeated low-velocity impact and compression after impact on composites laminates coated with PU were carried out, and mainly focused on the factors of damage degree ,the thickness of composites and coating which could affect the compression strength after impact of composite laminates coated with PU. Moreover the process of compression after impact acting on laminated was tested via digital image correlation (DIC) which can gather the topography of specimens during testing in time, so the damage process and damage modes of specimens with various damage degrees were analyzed. Finally, the conclusions can be acquired:The damage inflection point exists by the increasing of impact numbers, and the compression strength decreased with increasing the thickness of composite laminates. In addition, the compression strength after impact of composite laminates coated with PU increased with increasing coating thickness. As for the specific damage position of different specimens, it is related with damage degree, which is also related with compression damage process.

Key wordscomposite    polyurethane coating    composite laminates thickness    compression strength after impact    damage inflection point    compression damage mode
收稿日期: 2016-10-10     
ZTFLH:  TB332  
基金资助:资助项目 天津市科技计划(16YFZCGX00190)和天津市高等学校科技发展基金计划(290ZD02)
作者简介:

作者简介 郭瑞彦,女,1990年生,硕士生

Specimen number Structure of laminates Thickness of base plate/mm Thickness of PU/mm Thickness of specimen/mm
A12 [0/90]6 2 0 2
A12 [0/90]6-PU(1mm) 2 1 3
A12 [0/90]6-PU(1.5mm) 2 1.5 3.5
A12 [0/90]6-PU(2mm) 2 2 4
A14 [0/90]7 2.4 0 2.4
A14 [0/90]7-PU 2.4 1 3.4
A16 [0/90]8 2.8 0 2.8
A16 [0/90]8-PU 2.8 1 3.8
表1  试样的具体结构参数
图1  冲击后压缩试验用ARAMIS测试系统
图2  冲击后压缩夹具示意图和冲击后压缩试验图
图3  试样喷斑处理前后表面的对比
图4  [0/90]7和[0/90]7-PU试样反复冲击直至穿透后的超声波C扫图
图5  [0/90]7-PU和[0/90]7试样在不同次数冲击后的压缩载荷-位移曲线
图6  不同次数冲击后的压缩强度-损伤面积曲线
图7  不同结构层合板在不同损伤状态下的破坏载荷和压缩强度
图8  不同结构层合板冲击后压缩强度下降的程度
图9  穿透时不同涂层厚度复合材料的压缩载荷位移曲线
图10  不同涂层厚度层合板在不同损伤状态下载荷峰值和压缩强度
图11  与未冲击相比压缩强度的下降程度
图12  基体损伤时试样、拐点时试样和穿透试样的压缩破坏照片
图13  未冲击时试样压缩过程中的应变分布云图
图14  基体开裂时试样压缩过程中的应变分布云图
图15  穿透时试样压缩过程中的应变分布云图
[1] Du S Y.Advanced composite materials and aerospace engineering[J]. Acta Mater. Compos. Sin., 2007, 24(1): 1(杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1)
[2] de Morais W A, Monteiro S N, d'Almeida J R M. Effect of the laminate thickness on the composite strength to repeated low energy impacts[J]. Compos. Struct., 2005, 70: 223
[3] Aurrekoetxea J, Sarrionandia M, Mateos M, et al.Repeated low energy impact behaviour of self-reinforced polypropylene composites[J]. Polym. Test., 2011, 30: 216
[4] Li J G.Composite material compression test after impact[J]. Fiber Compos., 2013, 30(2): 34(李建国. 复合材料冲击后压缩强度试验[J]. 纤维复合材料, 2013, 30(2): 34)
[5] Andrew J J, Arumugam V, Saravanakumar K, et al.Compression after impact strength of repaired GFRP composite laminates under repeated impact loading[J]. Compos. Struct., 2015, 133: 911
[6] Tooski M Y, Alderliesten R C, Ghajar R, et al.Experimental investigation on distance effects in repeated low velocity impact on fiber-metal laminates[J]. Compos. Struct., 2013, 99: 31
[7] Adams D F, Zimmerman R S.Static and impact performance of polyethylene fiber/graphite fiber hybrid composites[J]. SAMPE J., 1986, 22: 10
[8] Hart W G J, Ubels L C. Impact energy absorbing surface layers for protection of composite aircraft structures [A]. Proceedings of the 8th European Conference on Composite Materials:Science, Technologies and Applications [C]. Naples, Italy: Woodhead Publishing, Ltd, 1998
[9] Düring D, Wei? L, Stefaniak D, et al.Low-velocity impact response of composite laminates with steel and elastomer protective layer[J]. Compos. Struct., 2015, 134: 18
[10] Stelldinger E, Kühhorn A, Kober M.Experimental evaluation of the low-velocity impact damage resistance of CFRP tubes with integrated rubber layer[J]. Compos. Struct., 2016, 139: 30
[11] Martins R D,Donadon M V,de Almeida S F M. The effects of curvature and internal pressure on the compression-after-impact strength of composite laminates[J]. J. Compos. Mater., 2016, 50: 825
[12] Zhang Y.Testing and data analysis of laminates subjected to quasi-static indentation and compressive ultimate loads[J]. Fail. Anal. Prev., 2014, 9(1): 15(张颖. 层合板静压痕及压缩强度试验与其数据统计分析[J]. 失效分析与预防, 2014, 9(1): 15)
[13] Cheng X Q, Li Z N.Damage progressive model of compression of composite laminates after low velocity impact[J]. Appl. Math. Mech., 2005, 26: 569(程小全, 郦正能. 复合材料层合板低速冲击后压缩的损伤累积模型[J]. 应用数学和力学, 2005, 26: 569)
[14] Petit S, Bouvet C, Bergerot A, et al.Impact and compression after impact experimental study of a composite laminate with a cork thermal shield[J]. Compos. Sci. Technol., 2007, 67: 3286
[15] Rahmé P, Bouvet C, Rivallant S, et al.Experimental investigation of impact on composite laminates with protective layers[J]. Compos. Sci. Technol., 2012, 72: 182
[16] Nettles A T, Jackson J R, Hodge A J.Change in damage tolerance characteristics of sandwich structure with a thermal protection system (TPS)[J]. J. Compos. Mater., 2012, 46: 211
[17] He W, Guan Z D, Wang J.Experimental study on the low-velocity impact and compression after impact performances of composite laminates with a surface protection layer[J]. Acta Mater. Compos. Sin., 2014, 31: 485(何为, 关志东, 王进. 带表面防护层复合材料层板的低速冲击及冲击后压缩性能试验研究[J]. 复合材料学报, 2014, 31: 485)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.