Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 695-702    DOI: 10.11901/1005.3093.2016.575
  研究论文 本期目录 | 过刊浏览 |
铼对镍基单晶高温合金恒温氧化行为的影响
常剑秀1, 王栋2(), 董加胜2, 王迪2, 吴汉昌3, 张功2, 楼琅洪2
1 西安石油大学材料科学与工程学院 西安 710065
2 中国科学院金属研究所 沈阳 110016
3 中国航发贵阳中航动力精密铸造有限公司 贵阳 550014
Effect of Rhenium Addition on Isothermal Oxidation Behavior of a Nickel-base Single Crystal Superalloy
Jianxiu CHANG1, Dong WANG2(), Jiasheng DONG2, Di WANG2, Hanchang WU3, Gong ZHANG2, Langhong LOU2
1 College of Materials Science and Engineering, Xi?an Shiyou University, Xi?an 710065, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Guiyang AECC Power Investment Casting Ltd. Co., Guiyang 550014, China
引用本文:

常剑秀, 王栋, 董加胜, 王迪, 吴汉昌, 张功, 楼琅洪. 铼对镍基单晶高温合金恒温氧化行为的影响[J]. 材料研究学报, 2017, 31(9): 695-702.
Jianxiu CHANG, Dong WANG, Jiasheng DONG, Di WANG, Hanchang WU, Gong ZHANG, Langhong LOU. Effect of Rhenium Addition on Isothermal Oxidation Behavior of a Nickel-base Single Crystal Superalloy[J]. Chinese Journal of Materials Research, 2017, 31(9): 695-702.

全文: PDF(1602 KB)   HTML
摘要: 

采用不连续增重法研究了Re对一种镍基单晶高温合金1000℃恒温氧化行为的影响,采用扫描电镜(SEM)和X射线衍射分析仪(XRD)对样品的组织进行了观察。结果表明,两种合金生成的氧化膜成分相似,都生成了以含Cr、Ti氧化物为主的外氧化层、Al2O3内氧化层以及含有TiN的内氮化层。但二者氧化速率及氧化层结构存在较大差异,含Re合金的氧化速率较慢,Al2O3层较完整且TiN数量较少。Re的作用机理在于它提高了合金中Cr的活度,增大氧化膜中Cr2O3的含量,加快Al的选择性氧化,促进合金氧化膜内部连续Al2O3层的形成,抑制合金内部氮化物的生成,提高长期氧化下氧化膜的稳定性。

关键词 金属材料镍基单晶高温合金高温氧化Re活度选择性氧化    
Abstract

Effect of rhenium (Re) addition on isothermal oxidation behavior of a nickel-base single crystal superalloy was investigated by means of intermittent measurement of weight change as well as scanning electron microscope (SEM) and X-ray diffractometer (XRD). It was shown that, a scale composed of a (Cr, Ti)-enriched outer oxide layer, an inner Al2O3 layer and an inner TiN layer was formed for both the Re-containing and Re-free alloys, however, the Al2O3 layer was much more complete and the amount of TiN was much less on the Re-containing alloy rather than those on the Re-free alloy. Re was found to lower the oxidation rate of the alloy and improve the stability of the entire oxide scale during long-term oxidation by increasing the activity of Cr and thus increasing the content of Cr2O3 in the scale. Enhancement of Cr2O3 formation may then accelerate the selective oxidation of Al and thus promote the formation of a continuous Al2O3 layer beneath the outer oxide scale, as a result, which inhibited the formation of the inner nitride.

Key wordsmetallic materials    nickel-base single crystal superalloy    high temperature oxidation    rhenium (Re)    activity    selective oxidation
收稿日期: 2016-09-30     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51631008)和国家重点研发计划(2016YFB0701403)
作者简介:

作者简介 常剑秀,女,1989年生,讲师

Alloys Cr Ta Re Mo W Ti Al Co Ni
E1 Nominal 12.00 4.00 - 1.90 4.00 3.90 3.40 9.00 Bal.
Measured 11.90 3.90 - 1.89 3.84 3.94 3.52 8.97 -
E7 Nominal 12.00 4.00 2.00 1.90 4.00 3.90 3.40 9.00 Bal.
Measured 12.00 4.09 1.97 1.91 4.00 3.99 3.41 9.02 -
表1  实验合金的名义成分及实测成分
图1  E1和E7单晶合金的标准热处理组织
图2  E1 (12Cr-0Re)和E7 (12Cr-2Re)单晶合金在1000℃的恒温氧化动力学曲线
图3  E1和E7单晶合金在1000℃恒温氧化后的宏观形貌
Time Alloys Phase constituents
100 h E1 TiO2, CoAl2O4, Co3O4, γ+γ
E7 TiO2, NiCrO3, Al2O3, Co3O4, γ+γ
500 h E1 TiO2, NiCr2O4, CoAl2O4, Co3O4, γ+γ
E7 TiO2, NiCr2O4, AlTaO4, Al2O3, Co3O4, γ+γ′
表2  E1和E7单晶合金在1000℃恒温氧化产物的XRD分析结果
图4  E1和E7单晶合金在1000℃恒温氧化不同时间后的表面形貌
Al Cr Ti Ni Co Ta O
A - 1.21 26.18 0.49 - - 72.13
B 9.86 6.18 8.84 5.20 0.91 - 68.60
表3  图4中“A”和“B”区域的EDS结果
图5  E1单晶合金在1000℃恒温氧化不同时间后的截面形貌
Al Cr Ti Ni Co Ta O N
A 11.68 16.83 1.70 11.29 4.51 - 53.99 -
B - 1.49 54.92 11.16 1.75 - - 30.67
C 37.16 1.46 1.59 2.64 0.39 - 56.77 -
D 1.97 3.07 17.70 0.99 - - 76.27 -
E - 9.56 7.99 4.54 0.63 11.94 65.33 -
表4  图5中“A”、“B”、“C”、“D”和“E”区域的EDS结果
图6  E7单晶合金在1000℃恒温氧化不同时间后的截面形貌
Al Cr Ti Ni Co Ta O N
A 5.09 20.81 5.85 2.64 0.43 - 64.80 -
B 41.24 0.26 - 2.72 0.51 - 55.27 -
C - 1.70 59.79 6.41 1.02 1.48 - 29.60
D 3.65 10.51 10.51 9.32 2.10 - 63.92 -
表5  图6中“A”、“B”、“C”和“D”区域的EDS结果
[1] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 20
[2] Sajjadi S A, Nategh S, Guthrie R I L. Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111[J]. Mater. Sci. Eng., 2002, 325A: 484
[3] Erickson G L.The development of the CMSX?-11B and CMSX?-11C alloys for industrial gas turbine application [A]. Kissinger R D, Deye D J, Anton D L, et al. Superalloys 1996[M]. Warrendale, PA: TMS, 1996: 45
[4] Bürgel R, Grossmann J, Lüsebrink O, et al.Development of a new alloy for directional solidification of large industrial gas turbine blades [A]. Green K A, Pollock T M, Harada H, et al. Superalloys 2004[M]. Warrendale, PA: TMS, 2004: 25
[5] Zhang J S, Hu Z Q, Murata Y, et al.Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory. 1. Characterization of the phase-stability[J]. Metall. Trans. Phys. Metall. Mater. Sci., 1993, 24A: 2443
[6] Okada I, Torigoe T, Takahashi K, et al.Development of Ni base superalloy for industrial gas turbine [A]. Green K A, Pollock T M, Harada H, et al. Superalloys 2004[M]. Warrendale, PA: TMS, 2004: 707
[7] Giamei A F, Anton D L.Rhenium additions to a Ni-base superalloy: effects on microstructure[J]. Metall. Trans. 1985, 16 A: 1997
[8] Czech N, Schmitz F, Stamm W. Improvement of MCrAlY coatings by addition of rhenium [J]. Surf. Coat. Technol., 1994, 68-68: 17
[9] Beele W, Czech N, Quadakkers W J, et al. Long-term oxidation tests on a Re-containing MCrAlY coating [J]. Surf. Coat. Technol., 1997, 95-94: 41
[10] Phillips M A, Gleeson B.Beneficial effects of rhenium additions on the cyclic-oxidation resistance of β-NiAl+α-Cr alloys[J]. Oxidat. Met., 1998, 50: 399
[11] Pint B A, Haynes J A, More K L, et al.Compositional effects on aluminide oxidation performance: Objectives for improved bond coats [A]. Pollock T M, Kissinger R D, Bowman R R, et al. Superalloys 2000[M]. Warrendale, PA: TMS, 2000: 629
[12] Kawagishi K, Sato A, Kobayashi T, et al.in The Joint Symposium of IMR, KIMM and NIMS, Superalloys and Advanced Processing, 2005
[13] Moniruzzaman M, Murata Y, Morinaga M, et al.Alloy design of Ni-based single crystal superalloys for the combination of strength and surface stability at elevated temperatures[J]. ISIJ Int., 2003, 43: 1244
[14] Moniruzzaman M, Maeda M, Murata Y, et al.Degradation of high-temperature oxidation resistance for Ni-based alloys by Re addition and the optimization of Re/Al content[J]. ISIJ Int., 2003, 43: 386
[15] Huang L, Sun X F, Guan H R, et al.Improvement of the oxidation resistance of NiCrAlY coatings by the addition of rhenium[J]. Surf. Coat. Technol., 2006, 201: 1421
[16] Liu C T, Sun X F, Guan H R, et al.Effect of rhenium addition to a nickel-base single crystal superalloy on isothermal oxidation of the aluminide coating[J]. Surf. Coat. Technol., 2005, 194: 111
[17] Huang L, Sun X F, Guan H R, et al.Effect of rhenium addition on isothermal oxidation behavior of singlecrystal Ni-based superalloy[J]. Surf. Coat. Technol., 2006, 200: 6863
[18] Reed R C, Moverare J J, Sato A, et al.A new single crystal superalloy for power generation applications [A]. Huron E S, Reed R C, Hardy M C, et al. Superalloys 2012[M]. Warrendale, PA: TMS, 2012: 197
[19] Xu X J, Wu Q, Gong S K, et al.Effect of Cr and Re on the oxidation resistance of Ni3Al-base single crystal alloy IC21 at 1100 [A]. Han Y F, Lin J P, Xiao C B, et al. High Performance Structure Materials [M]. Boston: WIT Press, 2013: 582
[20] Tawancy H M.Enhancing the oxidation properties of gamma prime+gamma platinum bond coat by rhenium and yttrium additions for improved adhesion of thermal barrier coatings on nickel-base superalloys[J]. Oxidat. Met., 2015, 84: 491
[21] Giggins C S, Pettit F S.Oxidation of Ni-Cr alloys between 800° and 1200℃[J]. Trans. Metall. Soc. AIME, 1969, 245: 2495
[22] Giggins C S, Pettit F S.Oxidation of Ni-Cr-Al alloys between 1000° and 1200°C[J]. J. Electrochem. Soc., 1971, 118: 1782
[23] Han S, Young D J.Simultaneous internal oxidation and nitridation of Ni-Cr-Al alloys[J]. Oxidat. Met., 2001, 55: 223
[24] Chang J X, Wang D, Zhang G, et al.Effect of Re and Ta on hot corrosion resistance of nickel-base single crystal superalloys [A]. Hardy M, Huron E, Glatzel U, et al. Superalloys 2016[M]. Warrendale, PA: TMS, 2016: 177-185
[25] Chang J X.Effect of Ta and Re on hot corrosion and oxidation behavior of nickel-base single crystal superalloys [D]. Beijing: Institute of Metal Research, Chinese Academy of Sciences, 2016(常剑秀. Ta和Re对镍基单晶高温合金热腐蚀和氧化行为的影响 [D]. 北京: 中国科学院金属研究所, 2016)
[26] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxidat. Met., 1995, 42: 113
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.