Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (8): 569-575    DOI: 10.11901/1005.3093.2016.563
  研究论文 本期目录 | 过刊浏览 |
大规模无卤素合成金属有机骨架材料Fe-MIL-100
杨向平1, 郭晓雪1, 张成华2,3(), 杨勇2,3, 李永旺2,3
1 中国石油大学(华东)化学工程学院 青岛 266000
2 中科合成油技术有限公司煤炭间接液化国家工程实验室 北京 101407
3 中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原 030001
Large Scale Halogen-free Synthesis of Metal-organic Framework Material Fe-MIL-100
Xiangping YANG1, Xiaoxue GUO1, Chenghua ZHANG2,3(), Yong YANG2,3, Yongwang LI2,3
1 College of Chemical Engineering, China University of Petroleum (HD), Qingdao 266000, China
2 National Engineering Laboratory of Coal Indirect Liquefaction, Synfuels China Co. Ltd., Beijing 101407, China
3 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
引用本文:

杨向平, 郭晓雪, 张成华, 杨勇, 李永旺. 大规模无卤素合成金属有机骨架材料Fe-MIL-100[J]. 材料研究学报, 2017, 31(8): 569-575.
Xiangping YANG, Xiaoxue GUO, Chenghua ZHANG, Yong YANG, Yongwang LI. Large Scale Halogen-free Synthesis of Metal-organic Framework Material Fe-MIL-100[J]. Chinese Journal of Materials Research, 2017, 31(8): 569-575.

全文: PDF(2277 KB)   HTML
摘要: 

在不添加氢氟酸的条件下,以九水合硝酸铁和1,3,5-均苯三甲酸(H3BTC)为原料,用水热合成法制备了多孔铁的三聚物金属有机骨架材料(Fe-MIL-100)。采用XRD、BET、SEM、FT-IR和TG等手段表征Fe-MIL-100样品的结晶度、比表面积、形貌和热稳定性,研究了晶化过程中晶化温度、HNO3添加量、晶化时间以及后处理条件对Fe-MIL-100材料结构的影响。优化合成工艺条件后,制备出结晶度较高、热稳定性优异、比表面积可达1744 m2/g、在氮气氛下热分解温度可达520℃的Fe-MIL-100材料。

关键词 复合材料大规模合成三聚物金属有机骨架材料水热合成    
Abstract

Hierarchically porous iron (Ⅲ) trimesate Fe-MIL-100 were synthesized by hydro-thermal route of HF free in a large scale, with ironic nitrate and trimesic acid as raw materials. The structure and morphology of Fe-MIL-100 were characterized by X-ray diffraction (XRD), N2 physical adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TG). The effect of temperature, HNO3 addition, time and post-treatment on the structure of Fe-MIL-100 were investigated. The results show that the prepared Fe-MIL-100 has high crystallinity with BET surface area up to 1744 m2/g. The prepared materials have good thermal stability, which can withstand temperature up to 520 °C before decomposition in nitrogen.

Key wordscomposite    large scale synthesis    Fe-MIL-100    hydrothermal synthesis
收稿日期: 2016-09-26     
ZTFLH:  TQ050.4  
基金资助:国家自然科学基金重大计划项目(91545109)和山西省国际科技合作项目(2014081004)
作者简介:

作者简介 杨向平,男,1961年生,教授

图1  不同反应温度合成的Fe-MIL-100的XRD谱图
图2  不同HNO3添加量(摩尔配比)合成Fe-MIL-100的 XRD谱图
图3  不同HNO3添加量(摩尔配比)合成Fe-MIL-100的N2吸附脱附曲线
图4  不同HNO3添加量和不同HNO3/Fe比Fe-MIL-100样品的SEM照片
HNO3/Fe 0 1 2 3 4
sBET/m2g-1
vtotal/cm3g-1
819
0.43
1351
0.69
1558
0.77
1380
0.69
1301
0.67
表1  不同HNO3添加量制得Fe-MIL-100的织构性质
图5  不同晶化时间Fe-MIL-100的XRD谱图
图6  不同晶化时间Fe-MIL-100的N2吸脱附曲线
Time/h 6 12 24 36 48
sBET/m2g-1
vtotal/cm3g-1
984
0.50
1588
0.77
1744
0.95
1599
0.78
1647
0.85
表2  不同晶化时间Fe-MIL-100的织构性质
图7  各次洗涤后Fe-MIL-100的FT-IR谱图
图8  各次洗涤后Fe-MIL-100的N2吸脱附曲线
Washing time/h 0 1 2 3
sBET/m2g-1
vtotal/cm3g-1
246
0.32
759
0.41
984
0.50
1301
0.68
表3  不同洗涤次数Fe-MIL-100的织构性质
图9  反应物不同配比Fe-MIL-100的XRD谱图
图10  反应物不同配比Fe-MIL-100的N2吸脱附曲线
H3BTC/Fe(NO3)39H2O 0.5 0.66 1 1.5 2
sBET/m2g-1
vtotal/cm3g-1
1743
1.02
1744
0.95
1751
1.02
1410
0.82
1286
0.70
表4  反应物不同配比Fe-MIL-100的织构性质
图11  Fe-MIL-100的TG和热流量曲线图
[1] Rodenas T, Van Dalen M, García-Pérez E, et al.Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI[J]. Adv. Funct. Mater., 2014, 24: 249
[2] Gascon J, Corma A, Kapteijn F, et al.Metal organic framework catalysis: Quo vadis?[J]. ACS Catal., 2014, 4: 361
[3] Farrusseng D, Aguado S, Pinel C.Metal-organic frameworks: opportunities for catalysis[J]. Angewandt. Chem. Int. Ed., 2009, 48: 7502
[4] Wang C, Xie Z G, deKrafft K E, et al. Doping Metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. J. Am. Chem. Soc., 2011, 133: 13445
[5] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705
[6] Zhao D, Timmons D J, Yuan D Q, et al.Tuning the topology and functionality of metal-organic frameworks by ligand design[J]. Account. Chem. Res., 2011, 44: 123
[7] Horcajada P, Surblé S, Serre C, et al.Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores[J]. Chem. Commun., 2007, (27): 2820
[8] Férey G, Serre C, Draznieks C M, et al.A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandt. Chem. Int. Ed., 2004, 43: 6456
[9] Volkringer C, Popov D, Loiseau T, et al.Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100[J]. Chem. Mater., 2009, 21: 5695
[10] Mowat J P S, Miller S R, Slawin A M Z, et al. Synthesis, characterisation and adsorption properties of microporous scandium carbox ylates with rigid and flexible frameworks[J]. Micropor. Mesopor. Mater., 2011, 142: 322
[11] Lieb A, Leclerc H, Devic T, et al.MIL-100(V)-a mesoporous vanadium metal organic framework with accessible metal sites[J]. Micropor. Mesopor. Mater., 2012, 157: 18
[12] Wang D K, Wang M T, Li Z H.Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J]. ACS Catal., 2015, 5: 6852
[13] Zhu B J, Yu X Y, Jia Y, et al.Iron and 1, 3, 5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions[J]. J. Phys. Chem., 2012, 116C: 8601
[14] Horcajada P, Serre C, Vallet-Regí M, et al.Metal-organic frameworks as efficient materials for drug delivery[J]. Angewandt. Chem. Int. Ed., 2006, 45: 5974
[15] Plaza M G, Ribeiro A M, Ferreira A, et al.Rodrigues, Separation of C3/C4 hydrocarbon mixtures by adsorption using a mesoporous iron MOF: MIL-100(Fe)[J]. Micropor. Mesopor. Mater., 2012, 153: 178
[16] Kurfi?tova L, Seo Y K, Hwang Y K, et al.High activity of iron containing metal-organic-framework in acylation of p-xylene with benzoyl chloride[J]. Catal. Today, 2012, 179: 85
[17] Dhakshinamoorthy A, Alvaro M, Hwang Y K, et al.Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: influence of particle size on the activity of MIL-l00 (Fe) for oxidation reactions[J]. Dalton Trans., 2011, 40: 10719
[18] Ahmed I, Jeon J, Khan N A, et al.Synthesis of a metal-organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt[J]. Cryst. Growth Des., 2012, 12: 5878
[19] Vimont A, Leclerc H, Maugé F, et al.Creation of controlled br?nsted acidity on a zeotypic mesoporous chromium(III) carboxylate by grafting water and alcohol molecules[J]. J. Phys. Chem., 2007, 111C: 383
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.